Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nagle, A.R.; Fay, C.D.; Wallace, G.G.; Xie, Z.; Wang, X.; Higgins, M.J. Patterning and process parameter effects in 3d suspension near-field electrospinning of nanoarrays. Nanotechnology 2019, 30, 495301. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.F.; Li, W.W.; Wang, X.; Wu, D.Z.; Sun, D.H.; Lin, L.W. Precision deposition of a nanofibre by near-field electrospinning. J. Phys. D Appl. Phys. 2010, 43, 6. [Google Scholar] [CrossRef]
- Lopez-Covarrubias, J.G.; Soto-Munoz, L.; Iglesias, A.L.; Villarreal-Gomez, L.J. Electrospun nanofibers applied to dye solar sensitive cells: A review. Materials 2019, 12, 3190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J.L.; Jákli, A. Direct piezoelectric responses of soft composite fiber mats. Appl. Phys. Lett. 2013, 102, 153903. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Z.; Wu, T.; Zhang, L.B.; Feng, X.W.; Li, P.; Huang, F.L.; Zuo, C.C.; Mao, Z.P. Fabrication of flexible organic electronic microcircuit pattern using near-field electrohydrodynamic direct-writing method. J. Mater. Sci. Mater. Electron. 2019, 30, 17863–17871. [Google Scholar] [CrossRef]
- Zheng, G.F.; Jiang, J.X.; Wu, D.Z.; Sun, D.H. Near-field Electrospinning. In Electrospinning: Nanofabrication and Applications; William Andrew Publishing: Norwich, NY, USA, 2019; Volume 5, pp. 283–319. [Google Scholar]
- Li, K.; Wang, D.; Yi, S.; Jia, H.; Qian, J.; Du, Z.; Ren, T.; Liang, J.; Martinez-Chapa, S.O.; Madou, M. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement. Rev. Sci. Instrum. 2019, 90, 115001. [Google Scholar] [CrossRef]
- Guo, L.; Duan, Y.; Huang, Y.; Yin, Z. Experimental study of the influence of ink properties and process parameters on ejection volume in electrohydrodynamic jet printing. Micromachines 2018, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Coppola, S.; Nasti, G.; Todino, M.; Olivieri, F.; Vespini, V.; Ferraro, P. Direct writing of microfluidic footpaths by pyro-ehd printing. ACS Appl. Mater. Interfaces 2017, 9, 16488–16494. [Google Scholar] [CrossRef]
- Coppola, S.; Mecozzi, L.; Vespini, V.; Battista, L.; Grilli, S.; Nenna, G.; Loffredo, F.; Villani, F.; Minarini, C.; Ferraro, P. Nanocomposite polymer carbon-black coating for triggering pyro-electrohydrodynamic inkjet printing. ACS Appl. Mater. Interfaces 2015, 106, 261603. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, X.; Liu, F.; Huang, Y.H.; Zhang, Z.; Jiang, S.; Qin, H.T. Fabrication of micro-scale radiation shielding structures using tungsten nanoink through electrohydrodynamic inkjet printing. J. Micromech. Microeng. 2019, 29, 9. [Google Scholar] [CrossRef]
- Soldate, P.; Fan, J. Controlled deposition of electrospun nanofibers by electrohydrodynamic deflection. J. Appl. Phys. 2019, 125, 15. [Google Scholar] [CrossRef]
- Stanishevsky, A.; Yager, R.; Tomaszewska, J.; Binczarski, M.; Maniukiewicz, W.; Witonska, I.; Lukas, D. Structure and mechanical properties of nanofibrous zro2 derived from alternating field electrospun precursors. Ceram. Int. 2019, 45, 18672–18682. [Google Scholar] [CrossRef]
- Farkas, B.; Balogh, A.; Cselko, R.; Molnar, K.; Farkas, A.; Borbas, E.; Marosi, G.; Nagy, Z.K. Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning. Int. J. Pharm. 2019, 561, 219–227. [Google Scholar] [CrossRef]
- Schubert, M.; Rasche, J.; Laurila, M.M.; Vuorinen, T.; Mantysalo, M.; Bock, K. Printed flexible microelectrode for application of nanosecond pulsed electric fields on cells. Materials 2019, 12, 2713. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lin, Y.H.; Jiang, J.X.; Liu, H.Y.; Zhao, Y.; Zheng, G.F. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field. Appl. Phys. A Mater. Sci. Process. 2016, 122, 6. [Google Scholar] [CrossRef]
- Qin, H.T.; Dong, J.Y.; Lee, Y.S. Ac-pulse modulated electrohydrodynamic jet printing and electroless copper deposition for conductive microscale patterning on flexible insulating substrates. Robot. Comput. Integr. Manuf. 2017, 43, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Qin, H.T.; Ramirez-Iglesias, N.A.; Chiu, C.P.; Lee, Y.S.; Dong, J.Y. High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates. J. Micromech. Microeng. 2014, 24, 9. [Google Scholar] [CrossRef]
- Jiang, J.X.; Zheng, G.F.; Wang, X.; Zheng, J.Y.; Liu, J.; Liu, Y.F.; Li, W.W.; Guo, S.M. Printing of highly conductive solution by alternating current electrohydrodynamic direct-write. J. Phys. Conf. Ser. 2018, 986, 012027. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Byun, D. Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode. Appl. Phys. Lett. 2009, 94, 3. [Google Scholar] [CrossRef]
- Maheshwari, S.; Chang, H.C. Assembly of multi-stranded nanofiber threads through ac electrospinnig. Adv. Mater. 2009, 21, 349–354. [Google Scholar] [CrossRef]
- Kessick, R.; Fenn, J.; Tepper, G. The use of ac potentials in electrospraying and electrospinning processes. Polymer 2004, 45, 2981–2984. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, M.; Zhang, J.C. Ac electroluminescent processes in pr3+-activated (ba0.4ca0.6)tio3 diphase polycrystals. Materials 2017, 10, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zheng, G.; Liu, J.; Jiang, J.; Kang, G.; Wang, X.; Li, W.; Liu, Y. Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power. Instruments 2020, 4, 7. https://doi.org/10.3390/instruments4010007
Chen H, Zheng G, Liu J, Jiang J, Kang G, Wang X, Li W, Liu Y. Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power. Instruments. 2020; 4(1):7. https://doi.org/10.3390/instruments4010007
Chicago/Turabian StyleChen, Huatan, Gaofeng Zheng, Juan Liu, Jiaxin Jiang, Guoyi Kang, Xiang Wang, Wenwang Li, and Yifang Liu. 2020. "Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power" Instruments 4, no. 1: 7. https://doi.org/10.3390/instruments4010007
APA StyleChen, H., Zheng, G., Liu, J., Jiang, J., Kang, G., Wang, X., Li, W., & Liu, Y. (2020). Precise Electrohydrodynamic Direct-Write Micro-Droplets Based on a Designed Sinusoidal High-Voltage AC Power. Instruments, 4(1), 7. https://doi.org/10.3390/instruments4010007