Wavelength Shifters for Applications in Liquid Argon Detectors
Abstract
:1. Introduction
2. Fundamentals
2.1. Basic Requirements
- high absorption cross-section for the short wavelength light (e.g., 128 nm in LAr),
- high photoluminescence quantum yield (PLQY), i.e., the ratio between the number of re-emitted photons to the number of absorbed photons,
- high Stokes shift, i.e., low overlap between absorption and emission spectra resulting in the WLS being transparent to its own emission wavelength.
2.2. Conversion Mechanisms
3. Wavelength Shifter Types and Properties
3.1. Organic Wavelength Shifters
- Heterocycles (-conjugated molecules containing heteroatoms), e.g., coumarine or PPO, are another common class of fluors, however with lower photostability in comparison to aromatic hydrocarbons and with no significant history in the context of LAr detectors.
- Nanostructured organosilicon luminophores (NOL) [33] are a class of compounds in which aromatic hydrocarbon or heterocycle-based molecules are connected through silicon atoms, which permits excitation energy transfer via the Förster mechanism (FRET). NOLs can be designed and optimized for particular properties, including high PLQY at VUV excitation. While currently not used in LAr detectors, their applications in liquid xenon have been explored [34,35].
3.1.1. TPB
3.1.2. Polyethylene Naphthalate
3.1.3. P-Terphenyl
3.1.4. bis-MSB
3.1.5. Pyrene
3.2. Inorganic Wavelength Shifters
3.2.1. Nanoparticles
3.2.2. Xenon
4. Coating Production Techniques
4.1. Vacuum Evaporation
4.2. Solvent Coating
4.3. Doped Polymeric Matrix
4.4. Lamination
5. Stability and Aging
5.1. TPB
5.2. PEN
5.3. P-Terphenyl
5.4. Pyrene
6. Examples of Application
6.1. Scintillation Light Collection
6.1.1. WLS-Coated Passive Elements
6.1.2. WLS-Coated Photon Detectors
6.1.3. Two-Stage WLS
6.1.4. Photon Traps
6.2. Impact of WLS on Dark Matter Background Mitigation
6.2.1. WLS Effects in Pulse Shape Discrimination
6.2.2. Alpha Background Removal Using WLS
7. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
0-decay | Neutrinoless double beta decay |
bis-MSB | 1,4-Bis(2-methylstyryl)benzene |
ESR | Enhanced specular reflector |
FRET | Förster resonance energy transfer |
LAr | Liquid argon |
NOL | Nanostructured organosilicone luminophore |
PEN | Polyethylene naphthalate |
PLQY | Photoluminescence quantum yield |
PMMA | Poly(methyl methacrylate) |
PMT | Photomultiplier tube |
pTP | p-Terphenyl |
PS | Polystyrene |
PSD | Pulse shape discrimination |
SiPM | Silicon photomultiplier |
TPB | 1,1,4,4-Tetraphenyl-1,3-butadiene |
WLS | Wavelength shifter |
References
- Acciarri, R.; Antonello, M.; Baibussinov, B.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Cao, C.; Carbonara, F.; et al. The WArP experiment. J. Phys. Conf. Ser. 2010, 203, 012006. [Google Scholar] [CrossRef]
- Amaudruz, P.A.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C.E.; Bishop, D.; Bonattf, J.; Boormani, G.; Boulay, M.G.; Broerman, B.; et al. Design and construction of the DEAP-3600 dark matter detector. Astropart. Phys. 2019, 108, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.; Bourque, R.; Buck, B.; Butcher, A.; Caldwell, T.; Chen, Y.; Coakley, K.; Flores, E.; et al. Update on the MiniCLEAN Dark Matter Experiment. Phys. Procedia 2015, 61, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Boccone, V.; Lightfoot, P.K.; Mavrokoridis, K.; Regenfus, C.; Amsler, C.; Badertscher, A.; Bueno, A.; Cabrera, H.; Carmona-Benitez, M.C.; Daniel, M.; et al. Development of wavelength shifter coated reflectors for the ArDM argon dark matter detector. J. Instrum. 2009, 4, P06001. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Acerbi, F.; Agnes, P.; Albuquerque, I.F.M.; Alexer, T.; Alici, A.; Alton, A.K.; Antonioli, P.; Arcelli, S.; Ardito, R.; et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 2018, 133. [Google Scholar] [CrossRef]
- Arneodo, F.; Benetti, P.; Bettini, A.; Borio, A.; Calligarich, E.; Carpanese, C.; Casagre, F.; Cavalli, D.; Cavanna, F.; Cennini, P.; et al. The liquid argon TPC for the ICARUS experiment. Nucl. Phys. B Proc. Suppl. 1997, 54, 95–104. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. Design and Construction of the MicroBooNE Detector. J. Instrum. 2017, 12, P02017. [Google Scholar] [CrossRef]
- Szelc, A.M. The LArIAT light readout system. J. Instrum. 2013, 8, C09011. [Google Scholar] [CrossRef]
- Szelc, A. Developing LAr scintillation light collection ideas in the Short Baseline Neutrino Detector. J. Instrum. 2016, 11, C02018. [Google Scholar] [CrossRef]
- Pietropaolo, F. Review of Liquid-Argon Detectors Development at the CERN Neutrino Platform. J. Phys. Conf. Ser. 2017, 888, 012038. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. Volume IV. The DUNE far detector single-phase technology. J. Instrum. 2020, 15, T08010. [Google Scholar] [CrossRef]
- Agostini, M.; Bakalyarov, A.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S.; Benato, G.; et al. Upgrade for Phase II of the Gerda experiment. EPJ C 2017, 78, 388. [Google Scholar] [CrossRef] [Green Version]
- Zsigmond, A.J. LEGEND: The future of neutrinoless double-beta decay search with germanium detectors. J. Phys. Conf. Ser. 2020, 1468, 012111. [Google Scholar] [CrossRef]
- Tayloe, R. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source. J. Instrum. 2018, 13, C04005. [Google Scholar] [CrossRef] [Green Version]
- 3Dπ Meeting, GSSI. 2018. Available online: https://indico.gssi.it/event/7 (accessed on 24 December 2020).
- Nikkel, J.A.; Gozani, T.; Brown, C.; Kwong, J.; McKinsey, D.N.; Shin, Y.; Kane, S.; Gary, C.; Firestone, M. Liquefied Noble Gas (LNG) detectors for detection of nuclear materials. J. Instrum. 2012, 7, C03007. [Google Scholar] [CrossRef] [Green Version]
- Erlandson, A.; Jigmeddorj, B.; Kamaev, O.; Rand, E.T.; Yaraskavitch, L. ALARM: A Mini Liquid Argon Radiation Monitor, 2019. Presented at LIDINE 2019. Available online: https://indico.hep.manchester.ac.uk/contributionDisplay.py?contribId=14&sessionId=7&confId=5456 (accessed on 24 December 2020).
- Aprile, E.; Bolotnikov, A.E.; Bolozdynya, A.I.; Doke, T. Technology of Noble Gas Detectors. In Noble Gas Detectors; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Chapter 8; pp. 239–276. [Google Scholar] [CrossRef]
- Chepel, V.; Araújo, H. Liquid noble gas detectors for low energy particle physics. J. Instrum. 2013, 8, R04001. [Google Scholar] [CrossRef] [Green Version]
- Marchionni, A. Status and New Ideas Regarding Liquid Argon Detectors. Annu. Rev. Nucl. Part. Sci. 2013, 63, 269–290. [Google Scholar] [CrossRef] [Green Version]
- Gallina, G.; Giampa, P.; Retière, F.; Kroeger, J.; Zhang, G.; Ward, M.; Margetak, P.; Li, G.; Tsang, T.; Doria, L.; et al. Characterization of the Hamamatsu VUV4 MPPCs for nEXO. Nucl. Instrum. Methods Phys. Res. A 2019, 940, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Jia, L.; Huang, F. Vacuum-Ultraviolet Photon Detections. iScience 2020, 23, 101145. [Google Scholar] [CrossRef]
- The Global Argon Dark Matter Collaboration. Future Dark Matter Searches with Low-Radioactivity Argon, 2018. Input to the European Particle Physics Strategy Update 2018–2020. Available online: https://indico.cern.ch/event/765096/contributions/3295671 (accessed on 24 December 2020).
- Valeur, B.; Berberan-Santos, M.N. Characteristics of Fluorescence Emission. In Molecular Fluorescence; John Wiley & Sons, Ltd.: Noboken, NJ, USA, 2012; Chapter 3; pp. 53–74. [Google Scholar] [CrossRef]
- Benson, C.; Orebi Gann, G.; Gehman, V. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime. EPJ C 2018, 78, 329. [Google Scholar] [CrossRef] [Green Version]
- Graybill, J.R.; Shahi, C.B.; Coplan, M.A.; Thompson, A.K.; Vest, R.E.; Clark, C.W. Extreme ultraviolet photon conversion efficiency of tetraphenyl butadiene. Appl. Opt. 2020, 59, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Datta, A.K. Vacuum ultraviolet scintillators: Sodium salicylate and p-terphenyl. Appl. Opt. 1979, 18, 1414–1417. [Google Scholar] [CrossRef] [PubMed]
- Gehman, V.M. WLS R&D for the detection of noble gas scintillation at LBL: Seeing the light from neutrinos, to dark matter, to double beta decay. J. Instrum. 2013, 8, C09007. [Google Scholar] [CrossRef] [Green Version]
- Araujo, G.R. Wavelength Shifting and Photon Detection of Scintillation Light from Liquid Argon. Master’s Thesis, Technische Universitität München, Munich, Germany, 2019. Available online: http://deap3600.ca/wp-content/uploads/2019/07/MastersThesis_GRAraujo_27_03.pdf (accessed on 24 December 2020).
- Birks, J.B.; Kazzaz, A.A.; King, T.A.; Flowers, B.H. ’Excimer’ fluorescenc-IX. Lifetime studies of pyrene crystals. Proc. R. Soc. Lond. A 1966, 291, 556–569. [Google Scholar] [CrossRef]
- Kuźniak, M.; Broerman, B.; Pollmann, T.; Araujo, G.R. Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors. Eur. Phys. J. C 2019, 79, 291. [Google Scholar] [CrossRef]
- Yen, W.; Shionoya, S.; Yamamoto, H. Fundamentals of Phosphors; Taylor & Francis Group: Abingdon, UK, 2006. [Google Scholar]
- Borshchev, O.V.; Surin, N.M.; Skorotetcky, M.S.; Ponomarenko, S.A. Highly Efficient wavelength shifters: Design, properties, and applications. INEOS OPEN 2019, 2, 112–123. [Google Scholar] [CrossRef]
- Akimov, D.; Akindinov, A.; Alexandrov, I.; Belov, V.; Borshchev, O.; Burenkov, A.; Danilov, M.; Kovalenko, A.; Luponosov, Y.; Ponomarenko, S.; et al. Development of VUV wavelength shifter for the use with a visible light photodetector in noble gas filled detectors. Nucl. Instrum. Methods Phys. Res. A 2012, 695, 403–406. [Google Scholar] [CrossRef]
- Akimov, D.; Belov, V.; Borshchev, O.; Burenkov, A.; Grishkin, Y.; Karelin, A.; Kuchenkov, A.; Martemiyanov, A.; Ponomarenko, S.; Simakov, G.; et al. Test of SensL SiPM coated with NOL-1 wavelength shifter in liquid xenon. J. Instrum. 2017, 12, P05014. [Google Scholar] [CrossRef]
- Francini, R.; Montereali, R.M.; Nichelatti, E.; Vincenti, M.A.; Canci, N.; Segreto, E.; Cavanna, F.; Pompeo, F.D.; Carbonara, F.; Fiorillo, G.; et al. VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature. J. Instrum. 2013, 8, P09006. [Google Scholar] [CrossRef] [Green Version]
- Akgun, U.; Bilki, B.; Albayrak, E.A.; Bruecken, P.; Cankocak, K.; Clarida, W.; Cremaldi, L.; Duru, F.; Moeller, A.; Mestvirishvili, A.; et al. P-Terphenyl deposited quartz plate calorimeter prototype. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 2228–2233. [Google Scholar] [CrossRef]
- Mary, D.; Albertini, M.; Laurent, C. Understanding optical emissions from electrically stressed insulating polymers: Electroluminescence in poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalate) films. J. Phys. D Appl. Phys. 1997, 30, 171–184. [Google Scholar] [CrossRef]
- Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A.G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; et al. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature. J. Instrum. 2012, 7, P01016. [Google Scholar] [CrossRef] [Green Version]
- Brunet, M.; Cantin, M.; Julliot, C.; Vasseur, J. Propriétés de photocathodes métalliques et de couches fluorescentes dans l’ultraviolet lointain. J. Phys. Phys. Appl. 1963, 24, 53–59. [Google Scholar] [CrossRef]
- Mai, T.T.H.; Drouin, R. Relative Quantum Efficiencies of Some Ultraviolet Scintillators. Appl. Opt. 1971, 10, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Burton, W.M.; Powell, B.A. Fluorescence of Tetraphenyl-Butadiene in the Vacuum Ultraviolet. Appl. Opt. 1973, 12, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Lally, C.H.; Davies, G.J.; Jones, W.G.; Smith, N.J.T. UV quantum efficiencies of organic fluors. Nucl. Instrum. Methods Phys. Res. B 1996, 117, 421–427. [Google Scholar] [CrossRef]
- McKinsey, D.; Brome, C.; Butterworth, J.; Golub, R.; Habicht, K.; Huffman, P.; Lamoreaux, S.; Mattoni, C.; Doyle, J. Fluorescence efficiencies of thin scintillating films in the extreme ultraviolet spectral region. Nucl. Instrum. Methods Phys. Res. B 1997, 132, 351–358. [Google Scholar] [CrossRef]
- Application Guidelines ESR Family. 2018. Available online: https://multimedia.3m.com/mws/media/1389248O/application-guide-for-esr.pdf (accessed on 24 December 2020).
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant Birefringent Optics in Multilayer Polymer Mirrors. Science 2000, 287, 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Corning, J.; Araujo, G.; Stefano, P.D.; Pereymak, V.; Pollmann, T.; Skensved, P. Temperature-dependent fluorescence emission spectra of acrylic (PMMA) and tetraphenyl butadiene (TPB) excited with UV light. J. Instrum. 2020, 15, C03046. [Google Scholar] [CrossRef] [Green Version]
- Girlando, A.; Ianelli, S.; Bilotti, I.; Brillante, A.; Valle, R.D.; Venuti, E.; Campione, M.; Mora, S.; Silvestri, L.; Spearman, P.; et al. Spectroscopic and Structural Characterization of Two Polymorphs of 1,1,4,4-Tetraphenyl-1,3-butadiene. Cryst. Growth Des. 2010, 10, 2752–2758. [Google Scholar] [CrossRef]
- Bacchi, A.; Brillante, A.; Crocco, D.; Chierotti, M.R.; Della Valle, R.G.; Girlando, A.; Masino, M.; Pelagatti, P.; Venuti, E. Exploration of the polymorph landscape for 1,1,4,4-tetraphenyl-1,3-butadiene. CrystEngComm 2014, 16, 8205–8213. [Google Scholar] [CrossRef]
- Broerman, B.; Boulay, M.; Cai, B.; Cranshaw, D.; Dering, K.; Florian, S.; Gagnon, R.; Giampa, P.; Gilmour, C.; Hearns, C.; et al. Application of the TPB Wavelength Shifter to the DEAP-3600 Spherical Acrylic Vessel Inner Surface. J. Instrum. 2017, 12, P04017. [Google Scholar] [CrossRef] [Green Version]
- Stolp, D.; Dalager, O.; Dhaliwal, N.; Godfrey, B.; Irving, M.; Kazkaz, K.; Manalaysay, A.; Neher, C.; Stephenson, S.; Tripathi, M. An estimation of photon scattering length in tetraphenyl-butadiene. J. Instrum. 2016, 11, C03025. [Google Scholar] [CrossRef]
- Gehman, V.; Seibert, S.; Rielage, K.; Hime, A.; Sun, Y.; Mei, D.M.; Maassen, J.; Moore, D. Fluorescence efficiency and visible re-emission spectrum of tetraphenyl butadiene films at extreme ultraviolet wavelengths. Nucl. Instrum. Methods Phys. Res. A 2011, 654, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Flournoy, J.; Berlman, I.; Rickborn, B.; Harrison, R. Substituted tetraphenylbutadienes as fast scintillator solutes. Nucl. Instrum. Methods Phys. Res. A 1994, 351, 349–358. [Google Scholar] [CrossRef]
- Pollmann, T.; Boulay, M.; Kuźniak, M. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation. Nucl. Instrum. Methods Phys. Res. A 2011, 635, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Veloce, L.; Kuźniak, M.; Stefano, P.D.; Noble, A.; Boulay, M.; Nadeau, P.; Pollmann, T.; Clark, M.; Piquemal, M.; Schreiner, K. Temperature dependence of alpha-induced scintillation in the 1,1,4,4-tetraphenyl-1,3-butadiene wavelength shifter. J. Instrum. 2016, 11, P06003. [Google Scholar] [CrossRef] [Green Version]
- Segreto, E. Evidence of delayed light emission of tetraphenyl-butadiene excited by liquid-argon scintillation light. Phys. Rev. C 2015, 91, 035503. [Google Scholar] [CrossRef] [Green Version]
- Segreto, E.; Machado, A.; Araujo, W.; Teixeira, V. Delayed light emission of Tetraphenyl-butadiene excited by liquid argon scintillation light. Current status and future plans. J. Instrum. 2016, 11, C02010. [Google Scholar] [CrossRef]
- Stanford, C.; Westerdale, S.; Xu, J.; Calaprice, F. Surface background suppression in liquid argon dark matter detectors using a newly discovered time component of tetraphenyl-butadiene scintillation. Phys. Rev. D 2018, 98, 062002. [Google Scholar] [CrossRef] [Green Version]
- Voltz, R.; Laustriat, G. Radioluminescence des milieux organiques I. Étude cinétique. J. Phys. Fr. 1968, 29, 159–166. [Google Scholar] [CrossRef]
- Adhikari, P.; Ajaj, R.; Batygov, G.R.; Beltran, B.; Bina, C.E.; Boulay, M.G.; Broerman, B.; Bueno, J.F.; Butcher, A.; Cai, B.; et al. The liquid-argon scintillation pulseshape in DEAP-3600. EPJ C 2020, 80, 303. [Google Scholar] [CrossRef] [Green Version]
- Stanford, C.J. Alphas and Surface Backgrounds in Liquid Argon Dark Matter Detectors. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2017. Available online: https://www.proquest.com/docview/2002281264 (accessed on 24 December 2020).
- Ouchi, I.; Nakai, I.; Ono, M.; Kimura, S. Features of fluorescence spectra of polyethylene 2,6-naphthalate films. J. Appl. Polym. Sci. 2007, 105, 114–121. [Google Scholar] [CrossRef]
- Nakamura, H.; Shirakawa, Y.; Takahashi, S.; Shimizu, H. Evidence of deep-blue photon emission at high efficiency by common plastic. EPL 2011, 95, 22001. [Google Scholar] [CrossRef]
- Efremenko, Y.; Fajt, L.; Febbraro, M.; Fischer, F.; Guitart, M.; Hackett, B.; Hayward, C.; Hodák, R.; Majorovits, B.; Manzanillas, L.; et al. Use of poly(ethylene naphthalate) as a self-vetoing structural material. J. Phys. Conf. Ser. 2020, 1468, 012225. [Google Scholar] [CrossRef]
- Soto-Otón, J. Measurements of the Polyethylene Naphthalate Performance as a Wavelength Shifter in ProtoDUNE-DP, 2020. Presented at Neutrino 2020. Available online: https://zenodo.org/record/4122523#.X-05WFARXIV (accessed on 24 December 2020).
- Abt, I.; Dial, B.; Efremenko, Y.; Febbraro, M.; Fischer, F.; Guitart, M.; Gusev, K.; Hackett, B.; Hayward, C.; Kidder, M.; et al. Usage of PEN as self-vetoing structural material in low background experiments. arXiv 2020, arXiv:2011.08983. [Google Scholar]
- Dorril, R.; Abraham, Y.; Asaadi, J.; Littlejohn, B.; Rooks, M.; Tripathi, A. Performance Studies of PEN and TPB as UV Wavelength Shifting Coatings in Liquid Argon, 2020. Presented at Neutrino 2020. Available online: https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-538.pdf (accessed on 24 December 2020).
- Janecek, M. Reflectivity Spectra for Commonly Used Reflectors. IEEE Trans. Nucl. Sci. 2012, 59, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Baudis, L.; Benato, G.; Dressler, R.; Piastra, F.; Usoltsev, I.; Walter, M. Enhancement of light yield and stability of radio-pure tetraphenyl-butadiene based coatings for VUV light detection in cryogenic environments. J. Instrum. 2015, 10, P09009. [Google Scholar] [CrossRef]
- Wang, J.-J. MiniCLEAN Dark Matter Experiment. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 2017. Available online: https://digitalrepository.unm.edu/phyc_etds/169 (accessed on 24 December 2020).
- Xu, J. Study of Argon from Underground Sources for Direct Dark Matter Detection. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2013. Available online: http://arks.princeton.edu/ark:/88435/dsp015712m665h (accessed on 24 December 2020).
- Xu, J.; Stanford, C.; Westerdale, S.; Calaprice, F.; Wright, A.; Shi, Z. First measurement of surface nuclear recoil background for argon dark matter searches. Phys. Rev. D 2017, 96, 061101. [Google Scholar] [CrossRef] [Green Version]
- European Chemicals Agency, p-Terphenyl Database Entry. Available online: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/41099 (accessed on 24 December 2020).
- Feng, D.; Jian, W.; Xiang, Z.; Yun, D.; Chen, Y.; Li, Z.; Liu, M.; Hao, C.; Jun, C. Measurement of the fluorescence quantum yield of bis-MSB. Chin. Phys. C 2015, 39. [Google Scholar] [CrossRef] [Green Version]
- Baptista, B.; Mufson, S. Comparison of TPB and bis-MSB as VUV waveshifters in prototype LBNE photon detector paddles. J. Instrum. 2013, 8, C12003. [Google Scholar] [CrossRef]
- European Chemicals Agency, bis-MSB Database Entry. Available online: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/128141 (accessed on 24 December 2020).
- Procházka, K. Fluorescence Studies of Polymer Containing Systems; Springer: Cham, Switzerland, 2016; Volume 16. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahi, S.; Magill, S.; Ma, L.; Xie, J.; Chen, W.; Jones, B.; Nygren, D. Wavelength-shifting properties of luminescence nanoparticles for high energy particle detection and specific physics process observation. Sci. Rep. 2018, 8, 10515. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Barman, B.; Magill, S.; Motakef, S. Highly efficient photon detection systems for noble liquid detectors based on perovskite quantum dots. Sci. Rep. 2020, 10, 16932. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, P.; Pollmann, T.; Schönert, S.; Smolnikov, A.; Vasiliev, S. Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification. J. Instrum. 2008, 3, P08007. [Google Scholar] [CrossRef]
- Wahl, C.G.; Bernard, E.P.; Lippincott, W.H.; Nikkel, J.A.; Shin, Y.; McKinsey, D.N. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping. J. Instrum. 2014, 9, P06013. [Google Scholar] [CrossRef] [Green Version]
- Akimov, D.; Belov, V.; Konovalov, A.; Kumpan, A.; Razuvaeva, O.; Rudik, D.; Simakov, G. Fast component re-emission in Xe-doped liquid argon. J. Instrum. 2019, 14, P09022. [Google Scholar] [CrossRef] [Green Version]
- Galbiati, C.; Li, X.; Luo, J.; Marlow, D.R.; Wang, H.; Wang, Y. Pulse shape study of the fast scintillation light emitted from xenon-doped liquid argon using silicon photomultipliers. arXiv 2020, arXiv:2009.06238. [Google Scholar]
- Amaudruz, P.A.; Batygov, M.; Beltran, B.; Boudjemline, K.; Boulay, M.G.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Clevel, B.T.; et al. Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector. Astropart. Phys. 2015, 62, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E.; Abdelhakim, S.; Acerbi, F.; Agnes, P.; Ajaj, R.; Albuquerque, I.F.M.; Alexander, T.; Alici, A.; Alton, A.K.; Amaudruz, P.; et al. Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. J. Instrum. 2020, 15, P02024. [Google Scholar] [CrossRef] [Green Version]
- Csáthy, J.J.; Bode, T.; Kratz, J.; Schönert, S.; Wiesinger, C. Optical fiber read-out for liquid argon scintillation light. arXiv 2016, arXiv:1606.04254. [Google Scholar]
- Yang, H.; Xu, Z.F.; Tang, J.; Zhang, Y. Spin coating of TPB film on acrylic substrate and measurement of its wavelength shifting efficiency. Nucl. Sci. Tech. 2020, 31, 28. [Google Scholar] [CrossRef] [Green Version]
- Bower, K.E. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries; CRC Press: Abingdon, UK, 2002. [Google Scholar]
- Mavrokoridis, K. Light Readout Optimisation using Wavelength Shifter - Reflector Combinations. J. Phys. Conf. Ser. 2011, 308, 012020. [Google Scholar] [CrossRef]
- Baptista, B.; Bugel, L.; Chiu, C.; Conrad, J.M.; Ignarra, C.M.; Jones, B.J.P.; Katori, T.; Mufson, S. Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems. arXiv 2014, arXiv:1210.3793. [Google Scholar]
- Moss, Z.; Moon, J.; Bugel, L.; Conrad, J.M.; Sachdev, K.; Toups, M.; Wongjirad, T. A Factor of Four Increase in Attenuation Length of Dipped Lightguides for Liquid Argon TPCs Through Improved Coating. arXiv 2016, arXiv:1604.03103. [Google Scholar]
- Lubashevskiy, A.; Agostini, M.; Budjás, D.; Gangapshev, A.; Gusev, K.; Heisel, M.; Klimenko, A.; Lazzaro, A.; Lehnert, B.; Pelczar, K.; et al. Mitigation of 42Ar/42K background for the GERDA Phase II experiment. EPJ C 2018, 78, 15. [Google Scholar] [CrossRef] [Green Version]
- Sanguino, P.; Balau, F.; Botelho do Rego, A.; Pereira, A.; Chepel, V. Stability of tetraphenyl butadiene thin films in liquid xenon. Thin Solid Film. 2016, 600, 65–70. [Google Scholar] [CrossRef]
- Asaadi, J.; Jones, B.; Tripathi, A.; Parmaksiz, I.; Sullivan, H.; Williams, Z. Emanation and bulk fluorescence in liquid argon from tetraphenyl butadiene wavelength shifting coatings. J. Instrum. 2019, 14, P02021. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Canci, N.; Cavanna, F.; Segreto, E.; Szelc, A.M. Aging studies on thin tetra-phenyl butadiene films. J. Instrum. 2013, 8, C10002. [Google Scholar] [CrossRef]
- Chiu, C.S.; Ignarra, C.; Bugel, L.; Chen, H.; Conrad, J.M.; Jones, B.J.P.; Katori, T.; Moult, I. Environmental effects on TPB wavelength-shifting coatings. J. Instrum. 2012, 7, P07007. [Google Scholar] [CrossRef] [Green Version]
- Yahlali, N.; Garcia, J.; Díaz, J.; Soriano, A.; Fernandes, L. Ageing studies of TPB in noble gas detectors for dark matter and neutrinoless ββ decay searches. Spectrochim. Acta A 2017, 172, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.J.P.; VanGemert, J.K.; Conrad, J.M.; Pla-Dalmau, A. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors. J. Instrum. 2013, 8, P01013. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, W.; Looney, M.; MacKerron, D.; Eveson, R.; Adam, R.; Hashimoto, K.; Rakos, K. Latest Advances in Substrates for Flexible Electronics. J. Soc. Inf. Disp. 2007, 15, 1075–1083. [Google Scholar] [CrossRef]
- Mary, D.; Teyssedre, G.; Laurent, C. UV-induced degradation of poly(ethylene naphthalate) films from the standpoint of electrical and luminescence properties. In Proceedings of the 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225), Kitchener, ON, Canada, 14–17 October 2001; pp. 165–168. [Google Scholar] [CrossRef]
- Bolozdynya, A.I.; Bradley, A.W.; Brusov, P.P.; Dahl, C.E.; Kwong, J.; Shutt, T. Using a Wavelength Shifter to Enhance the Sensitivity of Liquid Xenon Dark Matter Detectors. IEEE Trans. Nucl. Sci. 2008, 55, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gamez, D.; Green, P.; Szelc, A. Predicting Transport Effects of Scintillation Light Signals in Large-Scale Liquid Argon Detectors. arXiv 2020, arXiv:2010.00324. [Google Scholar]
- Sorel, M. Expected performance of an ideal liquid argon neutrino detector with enhanced sensitivity to scintillation light. J. Instrum. 2014, 9, P10002. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Alexer, T.; Alton, A.; Arisaka, K.; Back, H.O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; et al. First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Lett. B 2015, 743, 456–466. [Google Scholar] [CrossRef]
- Machado, P.A.; Palamara, O.; Schmitz, D.W. The Short-Baseline Neutrino Program at Fermilab. Ann. Rev. Nucl. Part. Sci. 2019, 69, 363–387. [Google Scholar] [CrossRef] [Green Version]
- Szelc, A.M.; Basque, V.; Garcia-Gamez, D.; Segreto, E.; Littlejohn, B.; Dorrill, R.; Foreman, W.; Cavanna, F.; Kuźniak, M. Wavelength-shifting Reflector Foils in Liquid Argon Neutrino Detectors, 2020. Snowmass 2021 LOI. Available online: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF8_IF2_Andrzej_Szelc-145.pdf (accessed on 24 December 2020).
- Spanu, M.; Falcone, A.; Mazza, R.; Menegolli, A.; Prata, M.C.; Raselli, G.L.; Rossella, M.; Torti, M. Study on TPB as wavelength shifter for the new ICARUS T600 light collection system in the SBN program. J. Phys. Conf. Ser. 2018, 956, 012016. [Google Scholar] [CrossRef]
- Bugel, L.; Conrad, J.; Ignarra, C.; Jones, B.; Katori, T.; Smidt, T.; Tanaka, H.K. Demonstration of a lightguide detector for liquid argon TPCs. Nucl. Instrum. Methods Phys. Res. A 2011, 640, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; Abud, A.A.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adamowski, M.; Adams, D.; Adrien, P.; Adinolfi, M.; Ahmad, Z.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. arXiv 2020, arXiv:2007.06722. [Google Scholar]
- Howard, B.; Mufson, S.; Whittington, D.; Adams, B.; Baugh, B.; Jordan, J.; Karty, J.; Macias, C.; Pla-Dalmau, A. A novel use of light guides and wavelength shifting plates for the detection of scintillation photons in large liquid argon detectors. Nucl. Instrum. Methods Phys. Res. A 2018, 907, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Howard, B. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides. J. Instrum. 2018, 13, C02006. [Google Scholar] [CrossRef] [Green Version]
- Bazetto, M.Q.; Pimentel, V.; Machado, A.; Segreto, E. Study and characterization of WLS for ARAPUCA to DUNE experiment. J. Instrum. 2020, 15, C05048. [Google Scholar] [CrossRef]
- Segreto, E.; Machado, A.; Fauth, A.; Ramos, R.; de Souza, G.; Souza, H.; Pimentel, V.; Bazetto, M.Q.; Ayala-Torres, M. First liquid argon test of the X-ARAPUCA. J. Instrum. 2020, 15, C05045. [Google Scholar] [CrossRef]
- Auger, M.; Chen, Y.; Ereditato, A.; Goeldi, D.; Kreslo, I.; Lorca, D.; Luethi, M.; Mettler, T.; Sinclair, J.; Weber, M. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments 2018, 2, 3. [Google Scholar] [CrossRef]
- Auger, M.; Berner, R.; Chen, Y.; Ereditato, A.; Goeldi, D.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Piastra, F.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. arXiv 2019, arXiv:1908.10956. [Google Scholar]
- Boulay, M.; Hime, A. Technique for direct detection of weakly interacting massive particles using scintillation time discrimination in liquid argon. Astropart. Phys. 2006, 25, 179–182. [Google Scholar] [CrossRef]
- Hitachi, A.; Takahashi, T.; Funayama, N.; Masuda, K.; Kikuchi, J.; Doke, T. Effect of ionization density on the time dependence of luminescence from liquid argon and xenon. Phys. Rev. B 1983, 27, 5279–5285. [Google Scholar] [CrossRef]
- Amaudruz, P.A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M.G.; Broerman, B.; Bueno, J.F.; Butcher, A.; Cai, B.; et al. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1. Astropart. Phys. 2016, 85, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Antonello, M.; Baibussinov, B.; Baldo-Ceolin, M.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Carbonara, F.; et al. Effects of Nitrogen contamination in liquid Argon. J. Instrum. 2010, 5, P06003. [Google Scholar] [CrossRef] [Green Version]
- Agnes, P.; Albuquerque, I.F.M.; Alexer, T.; Alton, A.K.; Araujo, G.R.; Ave, M.; Back, H.O.; Baldin, B.; Batignani, G.; Biery, K.; et al. DarkSide-50 532-day dark matter search with low-radioactivity argon. Phys. Rev. D 2018, 98, 102006. [Google Scholar] [CrossRef] [Green Version]
- Wang, B. Alpha Background Study In Dark Matter Detection. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2014. Available online: https://surface.syr.edu/etd/194 (accessed on 24 December 2020).
- Boulay, M.; Kuźniak, M. Technique for surface background rejection in liquid argon dark matter detectors using layered wavelength-shifting and scintillating thin films. Nucl. Instrum. Methods Phys. Res. A 2020, 968, 163631. [Google Scholar] [CrossRef] [Green Version]
- Gallacher, D.; Boulay, M. Surface background rejection technique for liquid argon dark matter detectors using a thin scintillating layer. J. Instrum. 2020, 15, C03016. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.; Kuźniak, M.; Zheng, M.; Di Stefano, P. Spectroscopic and Time-Resolved Measurements of the Fluorescence of Pyrene at Low Temperatures for Noble Liquid Particle Detectors, 2016. Presented at CAP 2016. Available online: https://indico.cern.ch/event/472838/contributions/1150228 (accessed on 24 December 2020).
- Collaboration, D.E.A.P.; Ajaj, R.; Amaudruz, P.A.; Araujo, G.R.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C.E.; Bonatt, J.; Boulay, M.G.; et al. Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. Phys. Rev. D 2019, 100, 022004. [Google Scholar] [CrossRef] [Green Version]
- DOE Basic Research Needs Study on High Energy Physics Detector Research and Development, 2020. Available online: https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf (accessed on 24 December 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźniak, M.; Szelc, A.M. Wavelength Shifters for Applications in Liquid Argon Detectors. Instruments 2021, 5, 4. https://doi.org/10.3390/instruments5010004
Kuźniak M, Szelc AM. Wavelength Shifters for Applications in Liquid Argon Detectors. Instruments. 2021; 5(1):4. https://doi.org/10.3390/instruments5010004
Chicago/Turabian StyleKuźniak, Marcin, and Andrzej M. Szelc. 2021. "Wavelength Shifters for Applications in Liquid Argon Detectors" Instruments 5, no. 1: 4. https://doi.org/10.3390/instruments5010004
APA StyleKuźniak, M., & Szelc, A. M. (2021). Wavelength Shifters for Applications in Liquid Argon Detectors. Instruments, 5(1), 4. https://doi.org/10.3390/instruments5010004