Modern Trends in Neutron Scattering Instrument Technologies
Abstract
:1. Introduction
2. Technology Trends
- Operating neutron sources are becoming more powerful and the facilities become larger, but their overall number slowly decreases with time. This development is rooted in the funding mechanisms of fundamental research by national agencies, who tend to listen to capability arguments more than capacity arguments, in combination with the increasing cost to run these facilities. The decreasing number of operating facilities is a trend the community is actively trying to turn around.
- While scattering instruments exist for the primary purpose of facilitating scattering experiments in a certain science area, one looks at them today more like science laboratories. Samples can often be manipulated in more than one way, even going to non-equilibrium states in pump–probe experiments, while scattering data are taken.
- A general trend is to study smaller samples, with smaller (more focused) and more intense beams.
- New strategies for multiplexing beams are being developed and implemented in order to make use of as many neutrons simultaneously as possible.
- Automate as much as possible. Support a greater diversity of experiments at an instrument. Computational and experiment planning tools are becoming increasingly important.
- Some scattering cross sections depend on the neutron spin direction relative to the scattering vector, which ultimately leads to the truly unique capabilities of neutron scattering that other probes do not offer. In order to make better use of these unique capabilities, technology and measurement protocols are being developed for more sophisticated control and the manipulation of the neutron spin in an instrument.
- The remote control of scattering experiments at neutron beam lines was a capability in planning when its development was accelerated by the Covid-19 pandemic. For various reasons, neutron scattering experiments have traditionally not been conducted remotely. This capability has now been implemented at most beamlines that are in the user program at neutron facilities around the world.
2.1. Integrated Design of Sources and Instruments
2.2. Multiplexed Neutron Beams
2.3. Detectors
2.4. Polarized Neutron Beams
2.5. Data Acquisition Systems
- HPLC pump. It provides precise mixing of up to four fluids in a scattering cell. This can be used to change the fluid neutron contrast or fill the cell with the appropriate material to grow a soft matter film in situ. The feature to control flow and maximum pressure is provided.
- Syringe pump. Many film growth processes require an overabundance of material and a continuous exchange with a reservoir. The syringe pump allows users to push the required material back and forth through the cell to provide the optimum film growth conditions while conserving the expensive material. The push–pull sequence can be automatically processed, with controllable volume. The software also provided the control of the syringe dispenser valve positions, pump speed and volume, left/right syringe or both of the syringe pumps together movement, status read-back of pumps and valves, etc.
- Water bath. The water bath provides temperature control so that the beamline users can either hit the optimum condition for film growth or mimic the environment they wish to study the film in.
- Micro-fluid multi-way control valves. By including automated control valves, experimenters can remotely schedule fluid contrast changes or film growth steps between data collection intervals. This minimizes the requirement to enter the instrument and potentially disturb the delicate alignment of the fluid cell. Realigning can take a significant amount of time.
2.6. Virtual Instruments and Experiments Supported by Computer Simulation
- Model a sample material and calculate dynamical spectra (collective or single-molecule, tunneling, etc.). Nowadays, experiment analysis does not often go beyond this step.
- Simulate measured spectra, taking into account the instrument geometry and configuration, instrument resolution, and other relevant factors.
- Simulate spectra during the measurement with the aim to inform experimental decisions in real time.
- How can the instrument be set up to bring a feature of interest into the observable range, or to optimally place it in the observable range during an experiment?
- How long does one need to collect data until a feature of interest can be seen and characterized within a certain desired accuracy?
- How will a feature of interest evolve with temperature or other parameters?
- How will a feature of interest evolve if the sample composition is changed?
3. Conclusions and Outlook into the Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NobelPrize.org. The Nobel Prize in Physics. 1991. Available online: https://www.nobelprize.org/prizes/physics/1991/summary/ (accessed on 26 July 2022).
- NobelPrize.org. The Nobel Prize in Physics. 2007. Available online: https://www.nobelprize.org/prizes/physics/2007/summary/ (accessed on 26 July 2022).
- Willis, B.T.M.; Carlile, C.J. Experimental Neutron Scattering; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Carpenter, J.M.; Loong, C.K. Elements of Slow-Neutron Scattering; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Boothroyd, A.T. Principles of Neutron Scattering from Condensed Matter; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Carlile, C.J. ILL in the changing international context. Phys. B Condens. Matter 2006, 385–386, 961–965. [Google Scholar] [CrossRef]
- Gläser, W. The new neutron source FRM II. Appl. Phys. A 2002, 74, s23–s29. [Google Scholar] [CrossRef]
- West, C.D.; Farrar, M.B. Upgrading scientific capabilities at the high-flux isotope reactor. Phys. B Condens. Matter 1997, 241–243, 46–47. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, M.V.; Smolskiy, S.L.; Konoplev, K.A. Research Reactor PIK. Crystallogr. Rep. 2021, 66, 188–194. [Google Scholar] [CrossRef]
- Carpenter, J.M. Pulsed spallation neutron sources for slow neutron scattering. Nucl. Instrum. Methods 1977, 145, 91–113. [Google Scholar] [CrossRef]
- Wikipedia.org. Linear Particle Accelerator. Available online: https://en.wikipedia.org/wiki/Linear_particle_accelerator (accessed on 26 July 2022).
- Watanabe, N. Neutronics of pulsed spallation neutron sources. Rep. Prog. Phys. 2003, 66, 339–381. [Google Scholar] [CrossRef]
- Taylor, A. PROGRESS at the ISIS Facility. Phys. B Condens. Matter 2006, 385–386, 728–731. [Google Scholar] [CrossRef]
- Mason, T.; Abernathy, D.; Anderson, I.; Ankner, J.; Egami, T.; Ehlers, G.; Ekkebus, A.; Granroth, G.; Hagen, M.; Herwig, K.; et al. The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research. Phys. B Condens. Matter 2006, 385–386, 955–960. [Google Scholar] [CrossRef]
- Kajimoto, R.; Yokoo, T.; Nakamura, M.; Kawakita, Y.; Matsuura, M.; Endo, H.; Seto, H.; Itoh, S.; Nakajima, K.; Ohira-Kawamura, S. Status of neutron spectrometers at J-PARC. Phys. B Condens. Matter 2019, 562, 148–154. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.L. China’s first pulsed neutron source. Nat. Mater. 2016, 15, 689–691. [Google Scholar] [CrossRef]
- Andersen, K.H.; Bertelsen, M.; Zanini, L.; Klinkby, E.B.; Schönfeldt, T.; Bentley, P.M.; Saroun, J. Optimization of moderators and beam extraction at the ESS. J. Appl. Crystallogr. 2018, 51, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Herwig, K.; Gallmeier, F.X.; Remec, I. An Introduction to the Spallation Neutron Source Second Target Station. Rev. Sci. Instrum. 2022, submitted.
- Zhao, J.K.; Robertson, J.L.; Herwig, K.W.; Gallmeier, F.X.; Riemer, B.W. Optimizing moderator dimensions for neutron scattering at the spallation neutron source. Rev. Sci. Instrum. 2013, 84, 125104. [Google Scholar] [CrossRef] [PubMed]
- Mezei, F.; Zanini, L.; Takibayev, A.; Batkov, K.; Klinkby, E.; Pitcher, E.; Schönfeldt, T. Low dimensional neutron moderators for enhanced source brightness. J. Neutron Res. 2014, 17, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Gallmeier, F.X.; Lu, W.; Riemer, B.W.; Zhao, J.K.; Herwig, K.W.; Robertson, J.L. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station. Rev. Sci. Instrum. 2016, 87, 063304. [Google Scholar] [CrossRef]
- Gallmeier, F.X.; Remec, I. A Liquid Hydrogen Tube Moderator Arrangement for SNS Second Target Station. Rev. Sci. Instrum. 2022. accepted. [Google Scholar]
- Ageron, P. Cold neutron sources at ILL. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometer Detect. Assoc. Equip. 1989, 284, 197–199. [Google Scholar] [CrossRef]
- Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; et al. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 560, 444–453. [Google Scholar] [CrossRef]
- Škoro, G.; Lilley, S.; Bewley, R. Neutronics analysis of target, moderators and reflector design for the ISIS TS-1 project. Phys. B Condens. Matter 2018, 551, 381–385. [Google Scholar] [CrossRef]
- Mamontov, E.; Boone, C.; Frost, M.J.; Herwig, K.W.; Huegle, T.; Lin, J.Y.Y.; McCormick, B.; McHargue, W.; Stoica, A.D.; Torres, P.; et al. A concept of a broadband inverted geometry spectrometer for the Second Target Station at the Spallation Neutron Source. Rev. Sci. Instrum. 2022, 93, 045101. [Google Scholar] [CrossRef]
- An, K.; Stoica, A.D.; Huegle, T.; Lin, J.Y.Y.; Graves, V. MENUS—Materials engineering by neutron scattering. Rev. Sci. Instrum. 2022, 93, 053911. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.K.; Senesi, R. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. 2016, 654, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Rücker, U.; Cronert, T.; Voigt, J.; Dabruck, J.P.; Doege, P.-E.; Ulrich, J.; Nabbi, R.; Beßler, Y.; Butzek, M.; Büscher, M.; et al. The Jülich high-brilliance neutron source project. Eur. Phys. J. Plus 2016, 131, 19. [Google Scholar] [CrossRef]
- Gutberlet, T.; Rücker, U.; Zakalek, P.; Cronert, T.; Voigt, J.; Baggemann, J.; Doege, P.E.; Mauerhofer, E.; Böhm, S.; Dabruck, J.P.; et al. The Jülich high brilliance neutron source project –Improving access to neutrons. Phys. B Condens. Matter 2018. [Google Scholar] [CrossRef]
- Thulliez, L.; Letourneau, A.; Schwindling, J.; Chauvin, N.; Sellami, N.; Ott, F.; Menelle, A.; Annighöfer, B. First steps toward the development of SONATE, a Compact Accelerator driven Neutron Source. EPJ Web Conf. 2020, 239, 17011. [Google Scholar] [CrossRef]
- Islam, F.; Lin, J.; Huegle, T.; Lumsden, I.; Anderson, D.; Elliott, A.; Haberl, B.; Granroth, G. Computational optimization of a 3D printed collimator. J. Neutron Res. 2020, 22, 155–168. [Google Scholar] [CrossRef]
- Islam, F.F.; Haberl, B.; Lin, J.Y.Y.; Anderson, D.C.; Molaison, J.J.; Granroth, G.E. Novel data analysis method for obtaining better performance from a complex 3D-printed collimator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1014, 165646. [Google Scholar] [CrossRef]
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.S.; Love, L.; Dehoff, R.; Peter, W.; Watkins, T.R.; Pannala, S. Additive manufacturing of materials: Opportunities and challenges. MRS Bull. 2015, 40, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Frost, M. McStas2CAD: A Python-based Software Package for Scattering Instrument Concept Geometry Conversion. 2022; in preparation. [Google Scholar]
- Orench, I.P.; Clergeau, J.F.; Martínez, S.; Olmos, M.; Fabelo, O.; Campo, J. The new powder diffractometer D1B of the Institut Laue Langevin. J. Phys. Conf. Ser. 2014, 549, 012003. [Google Scholar] [CrossRef]
- Avdeev, M.; Hester, J.R. ECHIDNA: A decade of high-resolution neutron powder diffraction at OPAL. J. Appl. Crystallogr. 2018, 51, 1597–1604. [Google Scholar] [CrossRef]
- Fouquet, P.; Ehlers, G.; Farago, B.; Pappas, C.; Mezei, F. The wide-angle neutron spin echo spectrometer project WASP. J. Neutron Res. 2007, 15, 39–47. [Google Scholar] [CrossRef]
- Stewart, J.R.; Deen, P.P.; Andersen, K.H.; Schober, H.; Barthélémy, J.F.; Hillier, J.M.; Murani, A.P.; Hayes, T.; Lindenau, B. Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7. J. Appl. Crystallogr. 2009, 42, 69–84. [Google Scholar] [CrossRef]
- Klausz, M.; Kanaki, K.; Kittelmann, T.; Toft-Petersen, R.; Birk, J.O.; Olsen, M.A.; Zagyvai, P.; Hall-Wilton, R.J. A simulational study of the indirect-geometry neutron spectrometer BIFROST at the European Spallation Source, from neutron source position to detector position. J. Appl. Crystallogr. 2021, 54, 263–279. [Google Scholar] [CrossRef]
- Do, C.; Ashkar, R.; Boone, C.; Chen, W.R.; Ehlers, G.; Falus, P.; Faraone, A.; Gardner, J.S.; Graves, V.; Huegle, T.; et al. EXPANSE: A time-of-flight EXPanded Angle Neutron Spin Echo spectrometer at the Second Target Station of the Spallation Neutron Source. Rev. Sci. Instrum. 2022, 93, 075107. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Adler, D.M.; Brand, P.C.; Broholm, C.; Cook, J.C.; Brocker, C.; Hammond, R.; Huang, Z.; Hundertmark, P.; Lynn, J.W.; et al. MACS—A new high intensity cold neutron spectrometer at NIST. Meas. Sci. Technol. 2008, 19, 034023. [Google Scholar] [CrossRef]
- Lynn, J.W.; Chen, Y.; Chang, S.; Zhao, Y.; Chi, S.; Ratcliff, W.; Ueland, B.G.; Erwin, R.W. Double-focusing thermal triple-axis spectrometer at the NCNR. J. Res. Natl. Inst. Stand. Technol. 2012, 117, 61. [Google Scholar] [CrossRef]
- Lim, J.A.; Siemensmeyer, K.; Čermák, P.; Lake, B.; Schneidewind, A.; Inosov, D.S. BAMBUS: A new inelastic multiplexed neutron spectrometer for PANDA. J. Phys. Conf. Ser. 2015, 592, 012145. [Google Scholar] [CrossRef] [Green Version]
- Groitl, F.; Graf, D.; Birk, J.O.; Markó, M.; Bartkowiak, M.; Filges, U.; Niedermayer, C.; Rüegg, C.; Rønnow, H.M. CAMEA—A novel multiplexing analyzer for neutron spectroscopy. Rev. Sci. Instrum. 2016, 87, 035109. [Google Scholar] [CrossRef]
- Toft-Petersen, R.; Groitl, F.; Kure, M.; Lim, J.; Čermák, P.; Alimov, S.; Wilpert, T.; Le, M.D.; Quintero-Castro, D.; Niedermayer, C.; et al. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 830, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Groitl, F.; Toft-Petersen, R.; Quintero-Castro, D.L.; Meng, S.; Lu, Z.; Huesges, Z.; Le, M.D.; Alimov, S.; Wilpert, T.; Kiefer, K.; et al. MultiFLEXX–The new multi-analyzer at the cold triple-axis spectrometer FLEXX. Sci. Rep. 2017, 7, 13637. [Google Scholar] [CrossRef] [Green Version]
- Mezei, F. Multi-wavelength data collection strategies in inelastic neutron scattering. Phys. B Condens. Matter 2006, 385–386 Pt 2, 995–999. [Google Scholar] [CrossRef]
- Nakamura, M.; Nakajima, K.; Kajimoto, R.; Arai, M. Utilization of multiple incident energies on Cold-Neutron Disk-Chopper Spectrometer at J-PARC. J. Neutron Res. 2007, 15, 31–37. [Google Scholar] [CrossRef]
- Russina, M.; Mezei, F. First implementation of Repetition Rate Multiplication in neutron spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 604, 624–631. [Google Scholar] [CrossRef]
- Bewley, R.I.; Taylor, J.W.; Bennington, S.M. LET, a cold neutron multi-disk chopper spectrometer at ISIS. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 637, 128–134. [Google Scholar] [CrossRef]
- Nakajima, K.; Ohira-Kawamura, S.; Kikuchi, T.; Nakamura, M.; Kajimoto, R.; Inamura, Y.; Takahashi, N.; Aizawa, K.; Suzuya, K.; Shibata, K.; et al. AMATERAS: A Cold-Neutron Disk Chopper Spectrometer. J. Phys. Soc. Jpn. 2011, 80, SB028. [Google Scholar] [CrossRef] [Green Version]
- Sala, G.; Lin, J.Y.Y.; Graves, V.B.; Ehlers, G. Conceptual design of CHESS, a new direct-geometry inelastic neutron spectrometer dedicated to studying small samples. J. Appl. Crystallogr. 2018, 51, 282–293. [Google Scholar] [CrossRef]
- Andersen, K.H.; Argyriou, D.N.; Jackson, A.J.; Houston, J.; Henry, P.F.; Deen, P.P.; Toft-Petersen, R.; Beran, P.; Strobl, M.; Arnold, T.; et al. The instrument suite of the European Spallation Source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 957, 163402. [Google Scholar] [CrossRef]
- Arai, M.; Zanini, L.; Andersen, K.H.; Klinkby, E.; Villacorta, F.J.; Shibata, K.; Nakajima, K.; Harada, M. The performance of ESS spectrometers in comparison with instruments at a short-pulse source. J. Neutron Res. 2020, 22, 71–85. [Google Scholar] [CrossRef]
- Deen, P.P.; Longeville, S.; Lohstroh, W.; Moreira, F.; Fabrèges, G.; Loaiza, L.; Noferini, D. CSPEC: The cold chopper spectrometer of the ESS, a detailed overview prior to commissioning. Rev. Sci. Instrum. 2021, 92, 105104. [Google Scholar] [CrossRef]
- Zeitelhack, K. Search for alternative techniques to helium-3 based detectors for neutron scattering applications. Neutron News 2012, 23, 10–13. [Google Scholar] [CrossRef]
- Lacy, J.L.; Athanasiades, A.; Sun, L.; Martin, C.S.; Lyons, T.D.; Foss, M.A.; Haygood, H.B. Boron-coated straws as a replacement for 3He-based neutron detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 359–363. [Google Scholar] [CrossRef]
- Andersen, K.; Bigault, T.; Birch, J.; Buffet, J.C.; Correa, J.; Hall-Wilton, R.; Hultman, L.; Höglund, C.; Guérard, B.; Jensen, J.; et al. 10B multi-grid proportional gas counters for large area thermal neutron detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 720, 116–121. [Google Scholar] [CrossRef]
- Backis, A.; Khaplanov, A.; Jebali, R.A.; Ammer, R.; Apostolidis, I.; Birch, J.; Lai, C.C.; Deen, P.P.; Etxegarai, M.; de Ruette, N.; et al. Time- and energy-resolved effects in the boron-10 based multi-grid and helium-3 based thermal neutron detectors. Meas. Sci. Technol. 2020, 32, 035903. [Google Scholar] [CrossRef]
- Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.C.; Clergeau, J.F.; Deen, P.; Ehlers, G.; van Esch, P.; et al. Multi-Grid detector for neutron spectroscopy: Results obtained on time-of-flight spectrometer CNCS. J. Instrum. 2017, 12, P04030. [Google Scholar] [CrossRef]
- Ehlers, G.; Athanasiades, A.; Sun, L.; Martin, C.S.; Regmi, M.; Lacy, J.L. Performance tests of boron-coated straw detectors with thermal and cold neutron beams. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 953, 163238. [Google Scholar] [CrossRef] [Green Version]
- Wilpert, T. Boron trifluoride detectors. Neutron News 2012, 23, 14–19. [Google Scholar] [CrossRef]
- Knoll, G.F.; Knoll, T.F.; Henderson, T.M. Light collection in scintillation detector composites for neutron detection. IEEE Trans. Nucl. Sci. 1988, 35, 872–875. [Google Scholar] [CrossRef]
- Radiation Monitoring Devices. RMD, Inc. Available online: https://www.rmdinc.com/ (accessed on 26 July 2022).
- Losko, A.S.; Han, Y.; Schillinger, B.; Tartaglione, A.; Morgano, M.; Strobl, M.; Long, J.; Tremsin, A.S.; Schulz, M. New perspectives for neutron imaging through advanced event-mode data acquisition. Sci. Rep. 2021, 11, 21360. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, E.H.; Vontobel, P.; Frei, G.; Brönnimann, C. Neutron imaging—Detector options and practical results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 531, 228–237. [Google Scholar] [CrossRef]
- Anderson, I.S.; McGreevy, R.L.; Bilheux, H.Z. Neutron Imaging and Applications; Springer: New York, NY, USA, 2009; Volume 200, p. 987. [Google Scholar]
- Kardjilov, N.; Manke, I.; Woracek, R.; Hilger, A.; Banhart, J. Advances in neutron imaging. Mater. Today 2018, 21, 652–672. [Google Scholar] [CrossRef]
- Lovesey, S.W. Theory of Neutron Scattering from Condensed Matter; Oxford University Press: Oxford, UK, 1984; Volume 2. [Google Scholar]
- Ehlers, G.; Stewart, J.R.; Wildes, A.R.; Deen, P.P.; Andersen, K.H. Generalization of the classical xyz-polarization analysis technique to out-of-plane and inelastic scattering. Rev. Sci. Instrum. 2013, 84, 093901. [Google Scholar] [CrossRef] [PubMed]
- Mezei, F. Neutron spin echo: A new concept in polarized thermal neutron techniques. Z. Phys. Hadron. Nucl. 1972, 255, 146–160. [Google Scholar] [CrossRef]
- Golub, R.; Gähler, R. A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering. Phys. Lett. A 1987, 123, 43–48. [Google Scholar] [CrossRef]
- Gähler, R.; Golub, R.; Keller, T. Neutron resonance spin echo—A new tool for high resolution spectroscopy. Phys. B Condens. Matter 1992, 180–181, 899–902. [Google Scholar] [CrossRef]
- Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A. Neutron spin echo scattering angle measurement (SESAME). Rev. Sci. Instrum. 2005, 76, 053902. [Google Scholar] [CrossRef]
- Rekveldt, M.T.; van Dijk, N.H.; Grigoriev, S.V.; Kraan, W.H.; Bouwman, W.G. Three-dimensional magnetic spin-echo small-angle neutron scattering and neutron depolarization: A comparison. Rev. Sci. Instrum. 2006, 77, 073902. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.S.; Ehlers, G.; Faraone, A.; García Sakai, V. High-resolution neutron spectroscopy using backscattering and neutron spin-echo spectrometers in soft and hard condensed matter. Nat. Rev. Phys. 2020, 2, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.; Monkenbusch, M.; Arbe, A.; Colmenero, J. Neutron Spin Echo in Polymer Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–221. [Google Scholar] [CrossRef]
- Ehlers, G. Study of slow dynamic processes in magnetic systems by neutron spin-echo spectroscopy. J. Phys. Condens. Matter 2006, 18, R231–R244. [Google Scholar] [CrossRef]
- Schleger, P.; Alefeld, B.; Barthelemy, J.; Ehlers, G.; Farago, B.; Giraud, P.; Hayes, C.; Kollmar, A.; Lartigue, C.; Mezei, F.; et al. The long-wavelength neutron spin-echo spectrometer IN15 at the Institut Laue-Langevin. Phys. B Condens. Matter 1997, 241-243, 164–165. [Google Scholar] [CrossRef]
- Farago, B.; Falus, P.; Hoffmann, I.; Gradzielski, M.; Thomas, F.; Gomez, C. The IN15 upgrade. Neutron News 2015, 26, 15–17. [Google Scholar] [CrossRef]
- Gooßen, S.; Krutyeva, M.; Sharp, M.; Feoktystov, A.; Allgaier, J.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. Sensing Polymer Chain Dynamics through Ring Topology: A Neutron Spin Echo Study. Phys. Rev. Lett. 2015, 115, 148302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holler, S.; Moreno, A.J.; Zamponi, M.; Bačová, P.; Willner, L.; Iatrou, H.; Falus, P.; Richter, D. The Role of the Functionality in the Branch Point Motion in Symmetric Star Polymers: A Combined Study by Simulations and Neutron Spin Echo Spectroscopy. Macromolecules 2018, 51, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Pynn, R.; Fitzsimmons, M.R.; Lee, W.T.; Stonaha, P.; Shah, V.R.; Washington, A.L.; Kirby, B.J.; Majkrzak, C.F.; Maranville, B.B. Birefringent neutron prisms for spin echo scattering angle measurement. Phys. B Condens. Matter 2009, 404, 2582–2584. [Google Scholar] [CrossRef]
- Li, F.; Parnell, S.R.; Hamilton, W.A.; Maranville, B.B.; Wang, T.; Semerad, R.; Baxter, D.V.; Cremer, J.T.; Pynn, R. Superconducting magnetic Wollaston prism for neutron spin encoding. Rev. Sci. Instrum. 2014, 85, 053303. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pynn, R. A novel neutron spin echo technique for measuring phonon linewidths using magnetic Wollaston prisms. J. Appl. Crystallogr. 2014, 47, 1849–1854. [Google Scholar] [CrossRef]
- Shen, J.; Kuhn, S.J.; Dalgliesh, R.M.; de Haan, V.O.; Geerits, N.; Irfan, A.A.M.; Li, F.; Lu, S.; Parnell, S.R.; Plomp, J.; et al. Unveiling contextual realities by microscopically entangling a neutron. Nat. Commun. 2020, 11, 930. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, S.J.; McKay, S.; Shen, J.; Geerits, N.; Dalgliesh, R.M.; Dees, E.; Irfan, A.A.M.; Li, F.; Lu, S.; Vangelista, V.; et al. Neutron-state entanglement with overlapping paths. Phys. Rev. Res. 2021, 3, 023227. [Google Scholar] [CrossRef]
- Azuah, R.T.; Kneller, L.R.; Qiu, Y.; Tregenna-Piggott, P.L.; Brown, C.M.; Copley, J.R.; Dimeo, R.M. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl. Inst. Stand. Technol. 2009, 114, 341. [Google Scholar] [CrossRef] [PubMed]
- Arnold, O.; Bilheux, J.; Borreguero, J.; Buts, A.; Campbell, S.; Chapon, L.; Doucet, M.; Draper, N.; Ferraz Leal, R.; Gigg, M.; et al. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 764, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Zikovsky, J.; Peterson, P.F.; Wang, X.P.; Frost, M.; Hoffmann, C. CrystalPlan: An experiment-planning tool for crystallography. J. Appl. Crystallogr. 2011, 44, 418–423. [Google Scholar] [CrossRef]
- Cornwell, P.; Bunn, J.; Fancher, C.M.; Payzant, E.A.; Hubbard, C.R. Current capabilities of the residual stress diffractometer at the high flux isotope reactor. Rev. Sci. Instrum. 2018, 89, 092804. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, D.E.; Padula II, S.A.; Benafan, O.; Bunn, J.R.; Payzant, E.A.; An, K.; Penumadu, D.; Vaidyanathan, R. Mapping of Texture and Phase Fractions in Heterogeneous Stress States during Multiaxial Loading of Biomedical Superelastic NiTi. Adv. Mater. 2021, 33, 2005092. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia.org. OFF (File Format). Available online: https://en.wikipedia.org/wiki/OFF_(file_format) (accessed on 26 July 2022).
- Torres, J.R.; Fanelli, V.R.; Shinohara, Y.; May, A.F.; Ruiz-Rodriguez, M.; Everett, M.S.; Hermann, R.P. Resonant ultrasound spectroscopy probe for in-situ neutron scattering measurements. Proc. Meet. Acoust. 2021, 43, 045001. [Google Scholar] [CrossRef]
- anl.gov. Experimental Physics and Industrial Control System. Available online: http://www.aps.anl.gov/epics/ (accessed on 26 July 2022).
- Ankner, J.F.; Tao, X.; Halbert, C.E.; Browning, J.F.; Michael Kilbey, S.; Swader, O.A.; Dadmun, M.S.; Kharlampieva, E.; Sukhishvili, S.A. The SNS Liquids Reflectometer. Neutron News 2008, 19, 14–16. [Google Scholar] [CrossRef]
- Peterson, P.F.; Campbell, S.I.; Reuter, M.A.; Taylor, R.J.; Zikovsky, J. Event-based processing of neutron scattering data. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 803, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Granroth, G.E.; An, K.; Smith, H.L.; Whitfield, P.; Neuefeind, J.C.; Lee, J.; Zhou, W.; Sedov, V.N.; Peterson, P.F.; Parizzi, A.; et al. Event-based processing of neutron scattering data at the Spallation Neutron Source. J. Appl. Crystallogr. 2018, 51, 616–629. [Google Scholar] [CrossRef]
- Wiedenmann, A.; Keiderling, U.; Habicht, K.; Russina, M.; Gähler, R. Dynamics of Field-Induced Ordering in Magnetic Colloids Studied by New Time-Resolved Small-Angle Neutron-Scattering Techniques. Phys. Rev. Lett. 2006, 97, 057202. [Google Scholar] [CrossRef] [Green Version]
- Olds, D.; Lawler, K.V.; Paecklar, A.A.; Liu, J.; Page, K.; Peterson, P.F.; Forster, P.M.; Neilson, J.R. Capturing the Details of N2 Adsorption in Zeolite X Using Stroboscopic Isotope Contrasted Neutron Total Scattering. Chem. Mater. 2018, 30, 296–302. [Google Scholar] [CrossRef]
- Nojiri, H.; Yoshii, S.; Yasui, M.; Okada, K.; Matsuda, M.; Jung, J.S.; Kimura, T.; Santodonato, L.; Granroth, G.E.; Ross, K.A.; et al. Neutron Laue Diffraction Study on the Magnetic Phase Diagram of Multiferroic MnWO4 under Pulsed High Magnetic Fields. Phys. Rev. Lett. 2011, 106, 237202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toft-Petersen, R.; Fogh, E.; Kihara, T.; Jensen, J.; Fritsch, K.; Lee, J.; Granroth, G.E.; Stone, M.B.; Vaknin, D.; Nojiri, H.; et al. Field-induced reentrant magnetoelectric phase in LiNiPO4. Phys. Rev. B 2017, 95, 064421. [Google Scholar] [CrossRef] [Green Version]
- Fogh, E.; Kihara, T.; Toft-Petersen, R.; Bartkowiak, M.; Narumi, Y.; Prokhnenko, O.; Miyake, A.; Tokunaga, M.; Oikawa, K.; Sørensen, M.K.; et al. Magnetic structures and quadratic magnetoelectric effect in LiNiPO4 beyond 30 T. Phys. Rev. B 2020, 101, 024403. [Google Scholar] [CrossRef] [Green Version]
- Willendrup, P.K.; Lefmann, K. McStas (i): Introduction, use, and basic principles for ray-tracing simulations. J. Neutron Res. 2020, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.Y.; Islam, F.; Sala, G.; Lumsden, I.; Smith, H.; Doucet, M.; Stone, M.B.; Abernathy, D.L.; Ehlers, G.; Ankner, J.F.; et al. Recent developments of MCViNE and its applications at SNS. J. Phys. Commun. 2019, 3, 085005. [Google Scholar] [CrossRef]
- Cai, X.X.; Kittelmann, T. NCrystal: A library for thermal neutron transport. Comput. Phys. Commun. 2020, 246, 106851. [Google Scholar] [CrossRef]
- Lieutenant, K.; Zendler, C.; Manoshin, S.; Fromme, M.; Houben, A.; Nekrassov, D. VITESS 2.10—Virtual instrumentation tool for the European Spallation Source. J. Neutron Res. 2014, 17, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Lieutenant, K.; Voigt, J.; Gutberlet, T.; Feygenson, M.; Brückel, T. Performance of neutron guide systems for low energy accelerator-driven neutron facilities. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1009, 165479. [Google Scholar] [CrossRef]
- Lin, J.Y.Y.; Aczel, A.A.; Abernathy, D.L.; Nagler, S.E.; Buyers, W.J.L.; Granroth, G.E. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride. Phys. Rev. B 2014, 89, 144302. [Google Scholar] [CrossRef] [Green Version]
- Leiner, J.C.; Jeschke, H.O.; Valentí, R.; Zhang, S.; Savici, A.T.; Lin, J.Y.Y.; Stone, M.B.; Lumsden, M.D.; Hong, J.; Delaire, O.; et al. Frustrated Magnetism in Mott Insulating (V1-xCrx)2O3. Phys. Rev. X 2019, 9, 011035. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Smith, H.L.; Granroth, G.E.; Abernathy, D.L.; Lumsden, M.D.; Winn, B.; Aczel, A.A.; Aivazis, M.; Fultz, B. MCViNE–An object oriented Monte Carlo neutron ray tracing simulation package. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 810, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Willendrup, P.K.; Lefmann, K. McStas (ii): An overview of components, their use, and advice for user contributions. J. Neutron Res. 2021, 23, 7–27. [Google Scholar] [CrossRef]
- Grammer, K. Geomwriter—A workflow for automatically generating MCNP geometry for neutron guide simulations. 2022; in preparation. [Google Scholar]
- Grammer, K.B.; Gallmeier, F.X.; Iverson, E.B. A Chopper Extension to model neutron transport with non-static surfaces and high-speed moving media in MCNPX 2.7. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 932, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Grammer, K.B.; Gallmeier, F.X.; Iverson, E.B. Non-static surfaces in MCNPX: The chopper extension. J. Neutron Res. 2020, 22, 191–198. [Google Scholar] [CrossRef]
- LeBlanc, M.D.; Aczel, A.A.; Granroth, G.E.; Southern, B.W.; Yan, J.Q.; Nagler, S.E.; Whitehead, J.P.; Plumer, M.L. Impact of further-range exchange and cubic anisotropy on magnetic excitations in the fcc kagome antiferromagnet IrMn3. Phys. Rev. B 2021, 104, 014427. [Google Scholar] [CrossRef]
- Mamontov, E.; Smith, R.W.; Billings, J.J.; Ramirez-Cuesta, A.J. Simple analytical model for fitting QENS data from liquids. Phys. B Condens. Matter 2019, 566, 50–54. [Google Scholar] [CrossRef]
- Andreas, B.; Jasmin, T.; Emanuel, B.; Luke, D.; Yongqiang, C.; Anup, P.; Łodziana, Z.; Hemley, R.J.; Ramirez-Cuesta, A.J. Inelastic neutron scattering evidence for anomalous H–H distances in metal hydrides. Proc. Natl. Acad. Sci. USA 2020, 117, 4021–4026. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Kolesnikov, A.I.; Ramirez-Cuesta, A.J. Simulation of Inelastic Neutron Scattering Spectra Directly from Molecular Dynamics Trajectories. J. Chem. Theory Comput. 2020, 16, 7702–7708. [Google Scholar] [CrossRef]
- Andersen, K.; Carlile, C. A Proposal for a Next Generation European Neutron Source. J. Phys. Conf. Ser. 2016, 746, 012030. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehlers, G.; Crow, M.L.; Diawara, Y.; Gallmeier, F.X.; Geng, X.; Granroth, G.E.; Gregory, R.D.; Islam, F.F.; Knudson, R.O., IV; Li, F.; et al. Modern Trends in Neutron Scattering Instrument Technologies. Instruments 2022, 6, 22. https://doi.org/10.3390/instruments6030022
Ehlers G, Crow ML, Diawara Y, Gallmeier FX, Geng X, Granroth GE, Gregory RD, Islam FF, Knudson RO IV, Li F, et al. Modern Trends in Neutron Scattering Instrument Technologies. Instruments. 2022; 6(3):22. https://doi.org/10.3390/instruments6030022
Chicago/Turabian StyleEhlers, Georg, Morris L. Crow, Yacouba Diawara, Franz X. Gallmeier, Xiaosong Geng, Garrett E. Granroth, Raymond D. Gregory, Fahima F. Islam, Robert O. Knudson, IV, Fankang Li, and et al. 2022. "Modern Trends in Neutron Scattering Instrument Technologies" Instruments 6, no. 3: 22. https://doi.org/10.3390/instruments6030022
APA StyleEhlers, G., Crow, M. L., Diawara, Y., Gallmeier, F. X., Geng, X., Granroth, G. E., Gregory, R. D., Islam, F. F., Knudson, R. O., IV, Li, F., Loyd, M. S., & Vacaliuc, B. (2022). Modern Trends in Neutron Scattering Instrument Technologies. Instruments, 6(3), 22. https://doi.org/10.3390/instruments6030022