Development of a Novel Highly Granular Hadronic Calorimeter with Scintillating Glass Tiles
Abstract
:1. Introduction
2. Performance Studies of the Scintillating Glass HCAL
2.1. Hadronic Energy Resolution
2.2. Boson Mass Resolution
3. R&D of Scintillating Glass
4. Simulation Studies and Measurements of an HCAL Detector Unit
4.1. MIP Response
4.1.1. Cosmic Ray Experiment
4.1.2. Optical Simulation
4.2. Projected Performance
5. Summary and Prospects
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaboration, C. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Collaboration, A. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- The CEPC Study Group. CEPC Conceptual Design Report: Volume 2—Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- Brient, J.C. Improving the Jet Reconstruction with the Particle Flow Method: An Introduction. In Calorimetry in Particle Physics; World Scientific Publishing Co.: Singapore, 2004. [Google Scholar] [CrossRef]
- CALICE Website. Available online: https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome (accessed on 30 July 2022).
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Ruan, M. Performance Requirement from the Hadronic event/jet. LCWS2019. Available online: https://agenda.linearcollider.org/event/8217/contributions/44771/attachments/34967/54047/Jet_Requirement-LCWS.pdf (accessed on 30 July 2022).
- Eigen, G.; Price, T.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; et al. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter. J. Instrum. 2016, 11, P06013. [Google Scholar] [CrossRef]
- Adloff, C.; Blaha, J.; Blaising, J.J.; Drancourt, A.O. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques. JINST 2012, 7, P09017. [Google Scholar] [CrossRef]
- Ruan, M.; Zhao, H.; Li, G.; Fu, C.; Wang, Z.; Lou, X.; Yu, D.; Boudry, V.; Videau, H.; Balagura, V.; et al. Reconstruction of physics objects at the Circular Electron Positron Collider with Arbor. Eur. Phys. J. C 2018, 78, 1–14. [Google Scholar] [CrossRef]
- Tang, G.; Hua, Z.; Qian, S.; Sun, X.; Ban, H.; Cai, H.; Li, S.; Liu, H.; Liu, S.; Ma, L.; et al. Optical and scintillation properties of aluminoborosilicate glass. Opt. Mater. 2022, 130, 112585. [Google Scholar] [CrossRef]
- Raymond, C.; Ronca, S. Chapter 6—Relation of Structure to Electrical and Optical Properties. In Brydson’s Plastics Materials, 8th ed.; Gilbert, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 103–125. [Google Scholar] [CrossRef]
- Hamamatsu S13360 Series. Available online: http://www.hamamatsu.com.cn/UserFiles/upload/file/20190728/1.pdf (accessed on 30 July 2022).
Sample | Density (g/cm) | Transmittance (%) | Emission Peak (nm) | Light Yield (ph/MeV) | Energy Resolution (%) | Decay Time (ns) |
---|---|---|---|---|---|---|
#1 | ∼4.5 | 50 | 394 | 546 | 31.04 | 273, 1007 |
#2 | ∼4.5 | 78 | 392 | 536 | 36.47 | 334, 939 |
#3 | ∼4.5 | 75 | 393 | 680 | 29.02 | 351, 1123 |
#4 | 4.65 | 74 | 396 | 660 | 30.46 | 308, 1363 |
#5 | 4.94 | 74 | 392 | 705 | 27.84 | 354, 760 |
#6 | 4.53 | 67 | 393 | 802 | 26.77 | 318, 1380 |
#7 | 4.94 | 64 | 394 | 881 | 27.33 | 329, 839 |
Thickness (mm) | 3 | 5 | 10 | 15 | 20 | 23 |
Average Response | 65 | 106 | 149 | 127 | 112 | 104 |
Non-Uniformity | 1.1 | 0.67 | 0.47 | 0.53 | 0.63 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, D., on behalf of the CEPC CalorimeterWorking Group; Liu, Y., on behalf of the Scintillating Glass R&D Collaboration. Development of a Novel Highly Granular Hadronic Calorimeter with Scintillating Glass Tiles. Instruments 2022, 6, 32. https://doi.org/10.3390/instruments6030032
Du D on behalf of the CEPC CalorimeterWorking Group, Liu Y on behalf of the Scintillating Glass R&D Collaboration. Development of a Novel Highly Granular Hadronic Calorimeter with Scintillating Glass Tiles. Instruments. 2022; 6(3):32. https://doi.org/10.3390/instruments6030032
Chicago/Turabian StyleDu, Dejing on behalf of the CEPC CalorimeterWorking Group, and Yong Liu on behalf of the Scintillating Glass R&D Collaboration. 2022. "Development of a Novel Highly Granular Hadronic Calorimeter with Scintillating Glass Tiles" Instruments 6, no. 3: 32. https://doi.org/10.3390/instruments6030032
APA StyleDu, D., on behalf of the CEPC CalorimeterWorking Group, & Liu, Y., on behalf of the Scintillating Glass R&D Collaboration. (2022). Development of a Novel Highly Granular Hadronic Calorimeter with Scintillating Glass Tiles. Instruments, 6(3), 32. https://doi.org/10.3390/instruments6030032