Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement
Abstract
:1. Introduction
2. Post-Processing for PAL Integration on Si CMOS Image Sensors
2.1. Motivation and Challenges
2.2. Process Flow of High-Z PAL Integration on CIS
3. Experimental Testing of Bi2Te3 PAL-Integrated Si CIS for Hard X-ray Detection
3.1. X-ray Measurement Setup for Experimental Verification
3.2. Indication of Photon Energy Down Conversion
3.2.1. Indication of PEDC via Sporadic Outliers in Conversion Gain
3.2.2. Capturing PEDC during Photon Detection Events
3.3. PAL-CIS Signal Enhancement vs. Si Direct Detection
3.4. Estimation of Quantum Efficiency of PAL-CIS
Source Flux Accuracy Challenges and Calibration
4. Comparative Studies of PEDC in Different PAL and Scintillator Materials
4.1. X-ray Detection Event and Pixel Crosstalk Processing Algorithms
4.2. Results: Count Matrices and PEDC Performance Metrics
4.3. Summary of Comparative Studies of PAL
- (1)
- Bi2Te3 makes for a better-performing PAL material than the lower-Z Sn.
- (2)
- Pairing a Bi2Te3 PAL—and possibly Sn as well—enhanced the X-ray detection of Si CIS, while further coupling with conventional scintillator material LYSO reduced its performance.
4.4. Photon Energy Distribution Histogram Comparison
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Lee, E.; Anagnost, K.M.; Wang, Z.; James, M.R.; Fossum, E.R.; Liu, J. Monte Carlo Modeling and design of photon energy attenuation layers for >10x quantum yield enhancement in Si-based hard X-ray detectors. Instruments 2021, 5, 17. [Google Scholar] [CrossRef]
- Lee, E. Towards the Photonic Efficiency Enhancement of Solar-Selective Absorbers and Si-Based High-Energy X-ray Detectors. Ph.D. Thesis, Dartmouth College, Hanover, NH, USA, 2021. [Google Scholar]
- Wang, Z. On the single-photon-counting (SPC) modes of imaging using an XFEL source. J. Instrum. 2015, 10, C12013. [Google Scholar] [CrossRef]
- Wang, Z.; Anagnost, K.; Barnes, C.W.; Dattelbaum, D.M.; Fossum, E.R.; Lee, E.; Liu, J.; Ma, J.J.; Meijer, W.Z.; Nie, W.; et al. Billion-pixel X-ray camera (BiPC-X). Rev. Sci. Instrum. 2021, 92, 043708. [Google Scholar] [CrossRef] [PubMed]
- Shimura, F. Silicon crystal growth and wafer preparation. In Semiconductor Silicon Crystal Technology; Elsevier: Amsterdam, The Netherlands, 2012; p. 198. [Google Scholar]
- Robinson, S.P. X-ray Physics, Massachusetts Institute of Technology. 2007. Available online: http://web.mit.edu/8.13/www/JLExperiments/JLExp31.pdf (accessed on 1 August 2021).
- Fenelon, A.G.R. A X-ray Scanning Machine for Imaging Atomic Elements. Master’s Thesis, National Institute of Higher Education, Dublin, Ireland, 1988; p. 39. Available online: https://core.ac.uk/download/pdf/147605209.pdf (accessed on 1 August 2021).
- Li, Z. Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC. J. Instrum. 2009, 4, P03011. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Bingham, E.; Winer, M.; Conrad, J.M.; Robinson, S.P. Observation of relativistic corrections to Moseley’s law at high atomic number. arXiv 2018, arXiv:1809.10480. [Google Scholar]
- Lecture 8—Characterization. Available online: https://www.uio.no/studier/emner/matnat/ifi/IN5350/h20/timeplan/in5350_h20_8_characterization2.pdf (accessed on 6 October 2021).
- Avalanche Statistics. Available online: https://indico.cern.ch/event/35172/contributions/1754354/attachments/695985/955670/AvalancheStatisticsRD51Paris.pdf (accessed on 7 September 2021).
- He, Z.; Yang, J. Identification and reconstruction of single-pixel incomplete charge collection events. IEEE Trans. Nucl. Sci. 2013, 60, 2. [Google Scholar]
- Buttacavoli, A.; Principato, F.; Gerardi, G.; Cascio, D.; Raso, G.; Bettelli, M.; Zappettini, A.; Seller, P.; Veale, M.C.; Abbene, L. Incomplete charge collection at inter-pixel gap in low-and high-flux cadmium zinc telluride pixel detectors. Sensors 2022, 22, 1441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lioliou, G.; Butera, S.; Krysa, A.B.; Barnett, A.M. AlInP X-ray photodiodes without incomplete charge collection noise. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 960, 163606. [Google Scholar] [CrossRef]
- Butera, S.; Lioliou, G.; Krysa, A.B.; Barnett, A.M. InGaP (GaInP) mesa p-i-n photodiodes for X-ray photon counting spectroscopy. Sci. Rep. 2017, 7, 10206. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.; Cherepy, N.; Payne, S.A.; Hunter, S.L. Advancements in gamma spectrometers based on europium-doped strontium iodide and characterization of its gamma and electron response. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, USA, 8–15 November 2014. [Google Scholar]
- Desjardins, K.; Popescu, H.; Mercere, P.; Menneglier, C.; Gaudemer, R.; Thanell, K.; Jaouen, N. Characterization of a back-illuminated CMOS camera for soft x-ray coherent scattering. AIP Conf. Proc. 2019, 2054, 060066. [Google Scholar]
- Wang, Z. Advanced X-ray Methods for PMI in MFE. Available online: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-21-32331 (accessed on 12 August 2023).
- VITA 5000 5.3-Megapixel 75 FPS Global Shutter CMOS Image Sensor. Available online: https://www.onsemi.com/pdf/datasheet/noiv1sn5000a-d.pdf (accessed on 4 September 2021).
- Owens, A. Semiconductor Radiation Detectors; CRC Press, Taylor et Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2021. [Google Scholar]
- Performance of Epitaxial Layer in CMOS Devices. Available online: https://meroli.web.cern.ch/lecture_CMOS_APS_epilayer.html/ (accessed on 4 September 2021).
- CMOS Image Sensor Device and Fabrication. Available online: http://isl.stanford.edu/~abbas/ee392b/lect05.pdf (accessed on 4 September 2021).
- Xie, S.; Sun, Q.; Ying, G.; Guo, L.; Huang, Q.; Peng, Q.; Xu, J. Ultra-precise surface processing of LYSO scintillator crystals for positron emission tomography. Appl. Surf. Sci. 2019, 469, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Sun, M.; Wu, T.; Lu, Q.; Chen, B.; Huang, B. All-inorganic perovskite nanocrystals: Next-generation scintillation materials for high-resolution x-ray imaging. Nanoscale Adv. 2022, 4, 680–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, B.; Zhu, J.; Gu, M.; Chen, H.; Liu, J.; Chen, L.; Ouyang, X. Light extraction enhancement and directional control of scintillator by using micronlens arrays. Opt. Express 2018, 26, 18. [Google Scholar]
- Park, C.H.; Kang, S.W.; Jung, S.; Lee, D.J.; Park, Y.W.; Ju, B. Enhanced light extraction efficiency and viewing angle characteristic of microcavity OLEDs by using a diffusion layer. Sci. Rep. 2021, 11, 3430. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, J.; Zhang, Y.; Sun, R.; Liu, S.; Zhang, W.; Zhang, X.; Hu, F. PMMA-doped composite films microlens arrays on a flexible substrate for improving extraction of an organic light-emitting diode. Appl. Opt. 2022, 61, 4. [Google Scholar] [CrossRef] [PubMed]
- The Advanced Photon Source Research Techniques. Available online: https://www.aps.anl.gov/Beamlines/Research-Techniques (accessed on 7 September 2021).
- The Advanced Photon Source Beamline 1-BM-B,C: Optics & Detector Testing. Available online: https://www.aps.anl.gov/Beamlines/Directory/Details?beamline_id=1 (accessed on 7 September 2021).
- High-Caliber Research Launches NSLS-II Beamline into Operations. Available online: https://www.bnl.gov/newsroom/news.php?a=212833 (accessed on 12 August 2023).
Chip ID | Bi2Te3 PAL Thickness (nm) | Active Pixel Area Coverage (Full or Partial) |
---|---|---|
4 | 1000 | Partial |
9 | 250 | Full |
10 | 500 | Partial |
11 | 0 | Si reference |
Target | Average Emitted X-ray Photon Energy—Kα (keV) | # Photons/s/sr (Source Flux) | # Photons/s (Source Flux) |
---|---|---|---|
Cu | 8.04 | 2500 | 1250 |
Rb | 13.37 | 8800 | 4400 |
Mo | 17.44 | 24,000 | 12,000 |
Ag | 22.1 | 38,000 | 19,000 |
Ba | 32.06 | 46,000 | 23,000 |
Tb | 44.23 | 76,000 | 38,000 |
Plot from Figure 11 | Gaussian Peak # | Incident Photon Energy (keV) | Subtracted Integration Times (RT; 1RT = 61.4 µs) | Peak Position | # of Electrons | Photon Energy (keV) |
---|---|---|---|---|---|---|
(a) | 1 | 8.04 | 48–47 | 19.98 | 7689 | 2.80 |
2 | 69.74 | 2682 | 9.79 | |||
(b) | 1 | 44.23 | 73–72 | 11.58 | 445 | 1.63 |
2 | 35.62 | 1370 | 5.00 | |||
3 | 61.45 | 2364 | 8.63 | |||
(c) | 1 | 8.04 | 58–53 | 145.8 | 5608 | 20.47 |
2 | 111.7 | 4296 | 15.68 | |||
3 | 93.93 | 3613 | 13.19 |
Chip # | PAL Thickness (nm) | Incident Energy (kev) | Background Slope (dDN/dRT) | Measured Slope (dDN/dRT) | Difference (dDN/dRT) | Enhancement Factor from Si |
---|---|---|---|---|---|---|
11 | 0 | 8.04 | 5.83 ± 0.02 | 11.21 ± 0.01 | 5.38 ± 0.02 | Si Reference |
13.37 | 9.81 ± 0.05 | 3.98 ± 0.05 | ||||
17.44 | 11.62 ± 0.11 | 5.79 ± 0.11 | ||||
22.1 | 10.4 ± 0.11 | 4.57 ± 0.11 | ||||
32.06 | 12.02 ± 0.16 | 6.19 ± 0.16 | ||||
44.23 | 11.71 ± 0.03 | 5.88 ± 0.04 | ||||
9 | 250 | 8.04 | 10.24 ± 0.17 | 46.68 ± 0.33 | 36.44 ± 0.37 | 6.77 ± 0.07 |
13.37 | 59.07 ± 0.86 | 48.83 ± 0.88 | 12.27 ± 0.28 | |||
17.44 | 35.93 ± 0.16 | 25.69 ± 0.23 | 4.44 ± 0.09 | |||
22.1 | 35.32 ± 0.15 | 25.08 ± 0.23 | 5.49 ± 0.14 | |||
32.06 | 25.39 ± 0.07 | 15.15 ± 0.18 | 2.45 ± 0.07 | |||
44.23 | 31.21 ± 0.11 | 20.97 ± 0.20 | 3.57 ± 0.04 | |||
10 | 500 | 8.04 13.37 17.44 | 4.07 ± 0.12 | 45.15 ± 0.54 | 41.08 ± 0.55 | 7.64 ± 0.11 |
34.97 ± 0.27 | 30.90 ± 0.30 | 7.76 ± 0.13 | ||||
52.17 ± 0.48 | 48.10 ± 0.49 | 8.30 ± 0.18 | ||||
22.1 | 45.14 ± 0.29 | 41.07 ± 0.31 | 8.99 ± 0.23 | |||
32.06 | 47.35 ± 0.80 | 43.28 ± 0.81 | 6.99 ± 0.22 | |||
44.23 | 49.85 ± 1.06 | 45.78 ± 1.07 | 7.79 ± 0.19 | |||
4 | 1000 | 8.04 | 3.10 ± 0.07 | 35.01 ± 0.17 | 31.91 ± 0.18 | 5.93 ± 0.04 |
13.37 | 32.92 ± 0.34 | 29.82 ± 0.35 | 7.49 ± 0.13 | |||
17.44 | 37.41 ± 0.55 | 34.31 ± 0.55 | 5.93 ± 0.15 | |||
22.1 | 39.81 ± 0.48 | 36.71 ± 0.49 | 8.03 ± 0.22 | |||
32.06 | 47.04 ± 0.23 | 43.94 ± 0.24 | 7.10 ± 0.19 | |||
44.23 | 51.52 ± 0.44 | 48.42 ± 0.45 | 8.23 ± 0.09 |
Incident Energy (keV) | Original Flux (Photons/s) | Calibrated Flux (Photons/s) |
---|---|---|
8.04 | 1250 | 3.40 × 104 |
13.37 | 4400 | 1.20 × 105 |
17.44 | 12,000 | 3.26 × 105 |
22.1 | 19,000 | 5.16 × 105 |
32.06 | 23,000 | 6.25 × 105 |
44.23 | 38,000 | 1.03 × 106 |
Treatment | LYSO Scintillator | PMMA Window | 250 nm Bi2Te3 PAL | 500 nm Sn | Si | Chip ID |
---|---|---|---|---|---|---|
A | No | Yes | No | Yes | Yes | 3 |
B | Yes | Yes | No | Yes | Yes | 3 |
C | No | No | Yes | No | Yes | 9 |
D | No | Yes | Yes | No | Yes | 9 |
E | Yes | Yes | Yes | No | Yes | 9 |
Treatment | Adjusted Total Count, X-ray Detection Events | Total Count, Generated Photoelectrons | QE via Equation (3) (%) | QE via Equation (11) (%) |
---|---|---|---|---|
A | 10 | 1744 | 0.232 | 0.038 |
B | 0 | 0 | −0.015 | 0 |
C | 138 | 158,994 | 0.907 | 3.48 |
D | 79 | 104,919 | 2.47 | 2.30 |
E | 4 | 4711 | 0.69 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Larkin, K.D.; Yue, X.; Wang, Z.; Fossum, E.R.; Liu, J. Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement. Instruments 2023, 7, 24. https://doi.org/10.3390/instruments7030024
Lee E, Larkin KD, Yue X, Wang Z, Fossum ER, Liu J. Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement. Instruments. 2023; 7(3):24. https://doi.org/10.3390/instruments7030024
Chicago/Turabian StyleLee, Eldred, Kevin D. Larkin, Xin Yue, Zhehui Wang, Eric R. Fossum, and Jifeng Liu. 2023. "Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement" Instruments 7, no. 3: 24. https://doi.org/10.3390/instruments7030024
APA StyleLee, E., Larkin, K. D., Yue, X., Wang, Z., Fossum, E. R., & Liu, J. (2023). Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement. Instruments, 7(3), 24. https://doi.org/10.3390/instruments7030024