Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Timepix3 Quad
2.2. Low-Power Modes of Timepix3 Quad
- Normal mode—full performance (standard DACs settings, default 40 MHz matrix clock). The nominal power consumption is ≈6 W;
- Analog LP mode—the DACs are set to LP mode, while the default 40 MHz matrix clock is used. The power consumption is ≈3 W;
- LP20—The DACs are set to LP mode (analog LP) and the matrix clock is reduced to 20 MHz. The power consumption is ≈2.2 W;
- LP5—Same as LP20, but at a matrix clock of 5 MHz. The power consumption is lower than ≈2 W.
2.3. Experimental Setups
2.4. Data Analysis
- The deposited energy is defined as the sum of the energies measured in the pixels;
- The cluster size is defined as the number of pixels within a cluster;
- The cluster drift time difference is defined as the difference of the minimal and maximal timestamp measured within a cluster.
3. Results
3.1. Impact of Low-Power Settings on the Energy Measurement
3.2. Impact of the Low-Power Settings on the Time Resolution
3.3. Impact of the Low-Power Settings on the Cluster Shape
3.4. Effect of the Temperature on the Energy Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LP | Low-Power |
PAN | Penetrating Particle Analyzer |
DAC | Digital to Analog Converter |
ToT | Time over Threshold |
ToA | Time of Arrival |
PLL | Phase-Locked Loop |
Appendix A. The Full Set of the Timepix3 Analog DAC Settings in HP and LP Mode
DAC | Normal | Low-Power |
---|---|---|
PreampOn | 128 | 8 |
PreampOff | 8 | 8 |
VPreamp | 128 | 128 |
Ikrum | 15 | 10 (LP20) and 5 (LP5) |
Vfbk | 164 | 128 |
DiscS1On | 100 | 8 |
DiscS1Off | 8 | 8 |
DiscS2On | 128 | 8 |
DiscS2Off | 8 | 8 |
Pixel | 128 | 20 |
TpBufferIn | 128 | 128 |
TpBufferOut | 128 | 128 |
VtpCoarse | 128 | 128 |
VtpFine | 256 | 256 |
CpPLL | 128 | 128 |
PLLVcntrl | 128 | 128 |
References
- Llopart, X.; Ballabriga, R.; Campbell, M.; Tlustos, L.; Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Inst. Meth. A 2007, 581, 485–494. [Google Scholar] [CrossRef]
- Stoffle, N.; Pinsky, L.; Kroupa, M.; Hoang, S.; Idarraga, J.; Amberboy, C.; Rios, R.; Hauss, J.; Keller, J.; Bahadori, A.; et al. Timepix-based radiation environment monitor measurements aboard the International Space Station. Nucl. Instrum. Methods A 2015, 782, 143–148. [Google Scholar] [CrossRef]
- Kroupa, M.; Bahadori, A.; Campbell-Ricketts, T.; Empl, A.; Hoang, S.; Idarraga-Munoz, J.; Rios, R.; Semones, E.; Stoffle, N.; Tlustos, L.; et al. A semiconductor radiation imaging pixel detector for space radiation dosimetry. Life Sci. Space Res. 2015, 6, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Turecek, D.; Pinsky, L.; Jakubek, J.; Vykydal, Z.; Stoffle, N.; Pospisil, S. Small Dosimeter based on Timepix device for International Space Station. J. Instrum. 2011, 6, C12037. [Google Scholar] [CrossRef]
- Granja, C.; Polansky, S.; Vykydal, Z.; Pospisil, S.; Owens, A.; Kozacek, Z.; Mellab, K.; Simcak, M. The SATRAM Timepix spacecraft payload in open space on board the Proba-V satellite for wide range radiation monitoring in LEO orbit. Planet. Space Sci. 2016, 125, 114–129. [Google Scholar] [CrossRef]
- Gohl, S.; Bergmann, B.; Evans, H.; Nieminen, P.; Owens, A.; Posipsil, S. Study of the radiation fields in LEO with the Space Application of Timepix Radiation Monitor (SATRAM). Adv. Space Res. 2019, 63, 1646–1660. [Google Scholar] [CrossRef]
- Proba-V Carrying Radiation Detector from CERN to Space. Available online: http://www.esa.int/Our_Activities/Technology/Proba_Missions/Proba-V_carrying_radiation_detector_from_CERN_to_space (accessed on 20 December 2023).
- Baca, T.; Jilek, M.; Vertat, I.; Urban, M.; Nentvich, O.; Filgas, R.; Granja, C.; Inneman, A.; Daniel, V. Timepix in LEO Orbit onboard the VZLUSAT-1 Nanosatellite: 1-year of Space Radiation Dosimetry Measurements. J. Instrum. 2018, 13, C11010. [Google Scholar] [CrossRef]
- Filgas, R. et al. RISEPix—A Timepix-based radiation monitor telescope onboard the RISESAT satellite. Astron. Nachrichten 2019, 340, 674–680. [Google Scholar] [CrossRef]
- Poikela, T.; Plosila, J.; Westerlund, T.; Campbell, M.; De Gaspari, M.; Llopart, X.; Gromov, V.; Kluit, R.; Van Beuzekom, M.; Zappon, F.; et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 2014, 9, C05013. [Google Scholar] [CrossRef]
- Wong, W.S.; Alozy, J.; Ballabriga, R.; Campbell, M.; Kremastiotis, I.; Llopart, X.; Poikela, T.; Sriskaran, V.; Tlustos, L.; Turecek, D. Introducing Timepix2, a frame-based pixel detector readout ASIC measuring energy deposition and arrival time. Radiat. Meas. 2020, 131, 106230. [Google Scholar] [CrossRef]
- Wu, X.; Ambrosi, G.; Azzarello, P.; Bergmann, B.; Bertucci, B.; Cadoux, F.; Campbell, M.; Duranti, M.; Ionica, M.; Kole, M.; et al. Penetrating particle analyzer (pan). Adv. Space Res. 2019, 63, 2672–2682. [Google Scholar] [CrossRef]
- Burian, P.; Broulim, P.; Bergmann, B. Study of Power Consumption of Timepix3 Detector. J. Instrum. 2019, 14, C01001. [Google Scholar] [CrossRef]
- Burian, P.; Broulim, P.; Jara, M.; Georgiev, V.; Bergmann, B. Katherine: Ethernet Embedded Readout Interface for Timepix3. J. Instrum. 2017, 12, C11001. [Google Scholar] [CrossRef]
- Bergmann, B.; Pichotka, M.; Pospisil, S.; Vycpalek, J.; Burian, P.; Broulim, P.; Jakubek, J. 3D track reconstruction capability of a silicon hybrid active pixel detector. Eur. Phys. J. C 2017, 77, 421. [Google Scholar] [CrossRef]
- Ruffenach, M.; Bourdarie, S.; Bergmann, B.; Gohl, S.; Mekki, J.; Vaillé, J. A New Technique Based on Convolutional Neural Networks to Measure the Energy of Protons and Electrons With a Single Timepix Detector. IEEE Trans. Nucl. Sci. 2021, 68, 1746–1753. [Google Scholar] [CrossRef]
- Urban, M.; Nentvich, O.; Marek, L.; Hudec, R.; Sieger, L. Timepix3: Temperature Influence on Radiation Energy Measurement with Si Sensor. Sensors 2023, 23, 2201. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Doubravová, D. Timepix3: Temperature influence on X-ray measurements in counting mode with Si sensor. Radiat. Meas. 2021, 141, 106535. [Google Scholar] [CrossRef]
DAC Register | Analog Low-Power | Standard Settings |
---|---|---|
Ibias_Preamp_ON | 8 (1.294 V) | 128 (1.157 V) |
Ibias_DiscS1_ON | 8 (1.294 V) | 100 (1.059 V) |
Ibias_DiscS2_ON | 8 (1.294 V) | 128 (0.333 V) |
Ibias_PixelDAC | 20 (1.066 V) | 128 (0.942 V) |
LP Mode | Power Consumption (W) | |
---|---|---|
Timepix3 Quad | 4 × Timepix3 | |
Normal | 6 | 6 |
Analog LP | 2.9 | 2.9 |
LP 20 | 2.2 | 1.7 |
LP 5 | 2 | 1.2 |
Settings | (keV) | Chip Temperature (°C) | Ikrum |
---|---|---|---|
Normal (THL 3 keV) | 2.58 | 57 | 15 |
Normal (THL 4 keV) | 2.60 | 57 | 10 |
LP (THL 4 keV, 20 MHz) | 2.37 | 50 | 10 |
LP (THL 4 keV, 5 MHz) | 2.35 | 50 | 2 |
Settings | Sampling Frequency (MHz) | (ns) |
---|---|---|
Normal | 640 (1.56 ns) | 1.8 |
Analog LP | 640 (1.56 ns) | 5.9 |
LP 20 | 20 (50 ns) | 17.7 |
LP 5 | 5 (200 ns) | 73.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkas, M.; Bergmann, B.; Broulim, P.; Burian, P.; Ambrosi, G.; Azzarello, P.; Pušman, L.; Sitarz, M.; Smolyanskiy, P.; Sukhonos, D.; et al. Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications. Instruments 2024, 8, 11. https://doi.org/10.3390/instruments8010011
Farkas M, Bergmann B, Broulim P, Burian P, Ambrosi G, Azzarello P, Pušman L, Sitarz M, Smolyanskiy P, Sukhonos D, et al. Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications. Instruments. 2024; 8(1):11. https://doi.org/10.3390/instruments8010011
Chicago/Turabian StyleFarkas, Martin, Benedikt Bergmann, Pavel Broulim, Petr Burian, Giovanni Ambrosi, Philipp Azzarello, Lukáš Pušman, Mateusz Sitarz, Petr Smolyanskiy, Daniil Sukhonos, and et al. 2024. "Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications" Instruments 8, no. 1: 11. https://doi.org/10.3390/instruments8010011
APA StyleFarkas, M., Bergmann, B., Broulim, P., Burian, P., Ambrosi, G., Azzarello, P., Pušman, L., Sitarz, M., Smolyanskiy, P., Sukhonos, D., & Wu, X., on behalf of the PAN Collaboration. (2024). Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications. Instruments, 8(1), 11. https://doi.org/10.3390/instruments8010011