Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices
Abstract
:1. Introduction
2. Electric Field Modeling
3. Electrode Profile
4. Electric Field Simulation
5. Results and Discussion
5.1. Electric Field Distribution
5.2. Effect of Electrode Geometries on Field Intensity and Uniformity
5.3. Effect of Chamber Size on Field Strength
6. Electrode Applications for High-Voltage Sample Environmental Devices
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kompatscher, M.; Bär, M.; Hecht, J.; Muheim, C.; Kohlbrecher, J.; Kostorz, G.; Wagner, W. A high-temperature cell for in situ small-angle neutron scattering studies of phase separation in alloys. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 495, 40–47. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, C.; Dou, M.; Huang, Z.; Sun, Y.; Ye, F.; Yuan, B.; Bai, B.; Cheng, H.; Yang, S. Experimental and numerical investigation the radiant heating element in neutron scattering furnace. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1053, 168317. [Google Scholar] [CrossRef]
- Kandemir, T.; Wallacher, D.; Hansen, T.; Liss, K.-D.; d’Alnoncourt, R.N.; Schlögl, R.; Behrens, M. In situ neutron diffraction under high pressure—Providing an insight into working catalysts. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 673, 51–55. [Google Scholar] [CrossRef]
- Kirichek, O. Sample environment for neutron scattering experiments at ISIS. Neutron News 2019, 30, 14–16. [Google Scholar] [CrossRef]
- Bailey, I. A review of sample environments in neutron scattering. Z. Für Krist.-Cryst. Mater. 2003, 218, 84–95. [Google Scholar] [CrossRef]
- Usher, T.-M.; Forrester, J.S.; McDonnell, M.; Neuefeind, J.; Page, K.; Peterson, P.F.; Levin, I.; Jones, J.L. Time-of-flight neutron total scattering with applied electric fields: Ex situ and in situ studies of ferroelectric materials. Rev. Sci. Instrum. 2018, 89, 092905. [Google Scholar] [CrossRef]
- Koch, C. Experimental evidence for magnetic or electric field effects on phase transformations. Mater. Sci. Eng. A 2000, 287, 213–218. [Google Scholar] [CrossRef]
- Xi, Y.; Pozzo, L.D. Electric field directed formation of aligned conjugated polymer fibers. Soft Matter 2017, 13, 3894–3908. [Google Scholar] [CrossRef]
- Hanzawa, K.; Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. USA 2016, 113, 3986–3990. [Google Scholar] [CrossRef]
- Ma, L.; Lei, B.; Wang, N.; Yang, K.; Liu, D.; Meng, F.; Shang, C.; Sun, Z.; Cui, J.; Zhu, C. Electric-field-controlled superconductor–ferromagnetic insulator transition. Sci. Bull. 2019, 64, 653–658. [Google Scholar] [CrossRef]
- Shiogai, J.; Ito, Y.; Mitsuhashi, T.; Nojima, T.; Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 2016, 12, 42–46. [Google Scholar] [CrossRef]
- Xu, G.; Zhong, Z.; Bing, Y.; Ye, Z.-G.; Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 2006, 5, 134–140. [Google Scholar] [CrossRef]
- Kan, D.; Pálová, L.; Anbusathaiah, V.; Cheng, C.J.; Fujino, S.; Nagarajan, V.; Rabe, K.M.; Takeuchi, I. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 2010, 20, 1108–1115. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA 2010, 107, 2801–2806. [Google Scholar] [CrossRef] [PubMed]
- Yue-Hong, Y.; Hong-Ping, X. Theoretical study on the hydrogen storage properties of (MgO)(4) under external electric field. Acta Phys. Sin. 2019, 68, 163601. [Google Scholar] [CrossRef]
- Noruzi, K.; Swami, P.; Frejo, L.; Wright, J.; Wong, J.; Grande, D.; Datta-Chaudhuri, T. Effect of uniform capacitively coupled electric fields on matrix metabolism of osteoarthritic cartilage. Bioelectron. Med. 2022, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- López-Alonso, B.; Hernáez, A.; Sarnago, H.; Naval, A.; Güemes, A.; Junquera, C.; Burdío, J.M.; Castiella, T.; Monleón, E.; Gracia-Llanes, J. Histopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generator. Sci. Rep. 2019, 9, 2647. [Google Scholar] [CrossRef]
- Saunders, L.K.; Yeung, H.-M.; Warren, M.R.; Smith, P.; Gurney, S.; Dodsworth, S.F.; Vitorica-Yrezabal, I.J.; Wilcox, A.; Hathaway, P.V.; Preece, G. An electric field cell for performing in situ single-crystal synchrotron X-ray diffraction. J. Appl. Crystallogr. 2021, 54, 1349–1359. [Google Scholar] [CrossRef]
- Vergentev, T.Y.; Dyadkin, V.; Chernyshov, D.Y. In situ cell for X-ray single-crystal diffraction experiment at electric field. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2015, 9, 436–441. [Google Scholar] [CrossRef]
- Giacomelli, F.C.; da Silveira, N.P.; Nallet, F.; Cernoch, P.; Steinhart, M.; Stepanek, P. Cubic to hexagonal phase transition induced by electric field. Macromolecules 2010, 43, 4261–4267. [Google Scholar] [CrossRef]
- Hayward, D.W.; Magro, G.; Hörmann, A.; Prévost, S.; Schweins, R.; Richardson, R.M.; Gradzielski, M. A temperature-controlled electric field sample environment for small-angle neutron scattering experiments. Rev. Sci. Instrum. 2021, 92, 033903. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J. A computer study of uniform-field electrodes. Br. J. Appl. Phys. 1967, 18, 1617. [Google Scholar] [CrossRef]
- Luo, D.; Hui, D.-D.; Wen, W.-L.; Li, L.-L.; Xin, L.-W.; Zhong, Z.-Y.; Ji, C.; Chen, P.; He, K.; Wang, X.; et al. Design of a femtosecond electron diffractometer with adjustable gaps. Acta Phys. Sin. 2020, 69, 052901. [Google Scholar] [CrossRef]
- Rogowski, W. Die elektrische Festigkeit am Rande des Plattenkondensators: Ein Beitrag zur Theorie der Funkenstrecken und Durchführungen. Arch. Für Elektrotechnik 1923, 12, 1–15. [Google Scholar] [CrossRef]
- Bruce, F. Calibration of uniform-field spark-gaps for high-voltage measurement at power frequencies. J. Inst. Electr. Eng.-Part II Power Eng. 1947, 94, 138–149. [Google Scholar] [CrossRef]
- Sant’Anna, G.M.; Roveri, D.S.; Bertan, H.H.; Mologni, J.F.; Braga, E.S.; Alves, M.A.R. Analysis of the electric field behavior in the vicinity of a triple junction, using finite elements method computational simulations. J. Electrost. 2015, 74, 96–101. [Google Scholar] [CrossRef]
- Naik, S.; Bag, B.; Chandrasekaran, K. Electrical Field Analysis of Different Structure Conductors using FEM. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Amin, N.; Ishak, M.; Hamid, M.; Abd Rahman, M. Partial discharge investigation on palm oil using needle—Plane electrode configuration and electric field distribution using ANSYS Maxwell. In Proceedings of the 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Denpasar, Indonesia, 2–5 October 2017; pp. 440–445. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Shi, Z.; Dong, C.; Liu, W.; Tao, L. Optimization simulation of electric field of electrode leads for electrical desalination based on finite element analysis. Mod. Chem. Ind. 2022, 51, 646–650. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Yang, B. Finite element analysis and simulation research on three-dimensional electric field of capacitive angular displacement sensor. Comput. Simul. 2003, 20, 45–47. [Google Scholar] [CrossRef]
- Sima, W.; Yang, Q.; Sun, C.; Guo, F. Potential and electric-field calculation along an ice-covered composite insulator with finite-element method. IEE Proc.-Gener. Transm. Distrib. 2006, 153, 343–349. [Google Scholar] [CrossRef]
- Wang, Z.; Quan, Y. Engineering Electromagnetic; Tsinghua University Press: Beijing, China, 2021; p. 383. Available online: https://www.tup.tsinghua.edu.cn (accessed on 7 February 2024).
- Trinh, N.G. Electrode design for testing in uniform field gaps. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 1235–1242. [Google Scholar] [CrossRef]
Model | R0/mm | α/° | A/mm | D/mm | T/mm | Re/mm | d/mm |
---|---|---|---|---|---|---|---|
A | 40 | 40 | 15 | 130 | 23 | 10 | 11.5 |
B | 40 | 45 | 15 | 137 | 28 | 13.5 | 14 |
C | 40 | 50 | 19 | 162 | 45 | 22 | 22.5 |
D | 40 | 55 | 20 | 184 | 60 | 32 | 30 |
E | 40 | 60 | 20 | 208 | 78 | 44 | 39 |
Parameters | Anode (Aluminum) | Cathode (Aluminum) | Vacuum | Electrode Support (PEEK) | Vacuum Chamber (Stainless Steel) |
---|---|---|---|---|---|
Relative permittivity () | 1 | 1 | 1 | 3.1 | 1 |
Conductivity (Siemens/m) | 38 × 106 | 38 × 106 | 0 | 10 × 107 | 11 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Guo, T.; Yuan, B.; Yang, X.; Wang, G. Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices. Instruments 2024, 8, 26. https://doi.org/10.3390/instruments8020026
Sun G, Guo T, Yuan B, Yang X, Wang G. Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices. Instruments. 2024; 8(2):26. https://doi.org/10.3390/instruments8020026
Chicago/Turabian StyleSun, Guoliang, Tingting Guo, Bao Yuan, Xiaojing Yang, and Guang Wang. 2024. "Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices" Instruments 8, no. 2: 26. https://doi.org/10.3390/instruments8020026
APA StyleSun, G., Guo, T., Yuan, B., Yang, X., & Wang, G. (2024). Development of High-Voltage Electrodes for Neutron Scattering Sample Environment Devices. Instruments, 8(2), 26. https://doi.org/10.3390/instruments8020026