A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources
Abstract
:1. Introduction
2. Components of the FREYJA Neutron Reflectometer
2.1. Cold Neutron Source
2.2. Multi-Channel Collimator Guide
2.3. Frame Overlap Mirror (FOM)
2.4. Double−Disk Chopper System
2.5. Sample Stage
2.6. Polarization Option
2.6.1. Polarizer
2.6.2. Spin Flipper
2.7. Detector System
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IAEA. Compact Accelerator Based Neutron Sources; TECDOC Series 1981; International Atomic Energy Agency: Vienna, Austria, 2021; Available online: https://www.iaea.org/publications/14948/compact-accelerator-based-neutron-sources (accessed on 1 December 2023).
- World Nuclear Association, Website. 2024. Available online: https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/research-reactors.aspx (accessed on 1 March 2024).
- Hayter, J.; Penfold, J.; Williams, W. Observation of the interference of neutrons reflected from thin films. Nature 1976, 262, 569–570. [Google Scholar] [CrossRef]
- Stahn, J.; Glavic, A. Focusing neutron reflectometry: Implementation and experience on the TOF-reflectometer Amor. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 821, 44–54. [Google Scholar] [CrossRef]
- Daillant, J.; Gibaud, A. X-ray and Neutron Reflectivity: Principles and Applications. In Lecture Notes in Physics; Monographs 58; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Ott, F. Neutron reflectivity. In Surface Science Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 307–332. Available online: https://link.springer.com/chapter/10.1007/3-540-48696-8_5 (accessed on 1 March 2024).
- Mayes, M.; Jagadamma, S.; Ambaye, H.; Petridis, L.; Lauter, V. Neutron reflectometry reveals the internal structure of organic compounds deposited on aluminum oxide. Geoderma 2013, 192, 182–188. [Google Scholar] [CrossRef]
- Björck, M.; Andersson, G. GenX: An extensible X-ray reflectivity refinement program utilizing differential evolution. J. Appl. Cryst. 2007, 40, 1174–1178. [Google Scholar] [CrossRef]
- Williams, W.G. Polarized Neutrons; Series on Neutron Scattering in Condensed Matter; Clarendon Press: Oxford, UK, 1988; ISBN 9780198510055. [Google Scholar]
- Felici, R.; Penfold, J.; Ward, R.C.; Williams, W.G. A polarised neutron reflectometer for studying surface magnetism. Appl. Phys. A 1988, 45, 169–174. [Google Scholar] [CrossRef]
- NcNeutron. 2023. Available online: https://ife.no/en/project/ncneutron-norwegian-center-for-neutron-research (accessed on 15 April 2024).
- Saerbeck, T.; Cortie, D.L.; Brück, S.; Bertinshaw, J.; Holt, S.A.; Nelson, A.; James, M.; Lee, W.T.; Klose, F. Time-of-flight polarized neutron reflectometry on PLATYPUS: Status and future developments. Phys. Procedia 2013, 42, 213–217. [Google Scholar] [CrossRef]
- Mirrotron Ltd., Budapest, Hungary. Available online: https://mirrotron.com/en (accessed on 30 March 2024).
- de Haan, V.-O.; Knudsen, K.D. Application of a two-phase thermosyphon loop calculation method to a cold neutron source. Cryogenics 2019, 97, 55–62. [Google Scholar] [CrossRef]
- de Haan, V.-O.; Gommers, R.; Rowe, J.M. Thermodynamic calculations of a two-phase thermosyphon loop for cold neutron sources. Cryogenics 2017, 85, 30–43. [Google Scholar] [CrossRef]
- Hirakawa, N.; Nara, H.; Iwasaki, T.; Matsuyama, S.; Tsujimoto, K.; Kobayashi, K.; Kudoh, K. Measurement and Analysis of Cadmium Ratios of Activation Foils in Thermal Critical Assembly (KUCA B 3/8”P36EU-NU-EU). J. Nucl. Sci. Technol. 1993, 30, 628–637. [Google Scholar] [CrossRef]
- Mezei, F. Novel Polarized Neutron Devices: Supermirror and Spin Component Amplifier. Communications on Physics 1. 1976, pp. 81–85. Available online: https://www.ill.eu/fileadmin/user_upload/ILL/4_Neutrons_for_society/neutron-technology/pdfs/optics/comm-on-phys-sm-1.pdf (accessed on 19 March 2024).
- Willendrup, P.; Farhi, E.; Knudsen, E.; Filges, U.; Lefmann, K. McStas: Past, present and future. J. Neutron Res. 2014, 17, 35–43. [Google Scholar] [CrossRef]
- Lieutenant, K.; Zendler, C.; Manoshin, S.; Fromme, M.; Houben, A.; Nekrassov, D. VITESS 2.10-Virtual instrumentation tool for the European Spallation Source. J. Neutron Res. 2014, 17, 45–51. [Google Scholar] [CrossRef]
- SwissNeutronics, AG, Bruehlstrasse 28, CH-5313 Klingnau, Switzerland AG. 2024. Available online: https://www.swissneutronics.ch (accessed on 16 April 2024).
- Schanzer, C.; Schneider, M.; Böni, P. Neutron Optics: Towards Applications for Hot Neutrons. J. Phys. Conf. Ser. 2016, 746, 012024. [Google Scholar] [CrossRef]
- Gainov, R.R.; Mezei, F.; Füzi, J.; Russina, M. Design concepts for a supermirror V-cavity based combined beam polarizer and compressor system for the upgraded neutron time-of-flight spectrometer NEAT. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2019, 930, 42–48. [Google Scholar] [CrossRef]
- van Well, A.A. Double-disk chopper for neutron time-of-flight experiments. Phys. B Phys. Condens. Matter. 1992, 180–181, 959–961. [Google Scholar] [CrossRef]
- van Well, A.A.; de Haan, V.O.; Fredrikze, H. ROG, the new neutron reflectometer at IRI, Delft. Phys. B Phys. Condens. Matter. 1994, 198, 217–219. [Google Scholar] [CrossRef]
- Cousin, F.; Ott, F.; Gibert, F.; Menelle, A. EROS II: A boosted time-of-flight reflectometer for multi-purposes applications at the Laboratoire Léon Brillouin. Eur. Phys. J. Plus. 2011, 126, 109. [Google Scholar] [CrossRef]
- Cubitt, R.; Saerbeck, T.; Campbell, R.A.; Barker, R.; Gutfreund, P. An improved algorithm for reducing reflectometry data involving divergent beams or non-flat samples. J. Appl. Cryst. 2015, 48, 2006–2011. [Google Scholar] [CrossRef]
- Mauri, G.; Apostolidis, I.; Christensen, M.J.; Glavic, A.; Lai, C.C.; Laloni, A.; Messi, F.; Olsson, A.L.; Robinson, L.; Stahn, J.; et al. The Multi-Blade Boron-10-based neutron detector performance using a focusing reflectometer. J. Instrum. 2020, 15, P03010. [Google Scholar] [CrossRef]
- Stahn, J.; Glavic, A. Efficient polarization analysis for focusing neutron instruments. J. Phys. Conf. Ser. 2017, 862, 012007. [Google Scholar] [CrossRef]
- Glavic, A.; Stahn, J.; Schütz, S. Estia: Design of the polarized, small sample reflectometer at ESS. Swiss Neutron News 2016, 48, 6–16. [Google Scholar]
Instrument Type | Cold-Neutron TOF Reflectometer |
---|---|
Scattering geometry | Horizontal (sample surface vertical) |
Instrument length | 8.3 m (source–detector) |
4.0 m (chopper–detector) | |
2.4 m (sample–detector) | |
Wavelength range 1 | 2–15 Å (unpolarized) |
2.5–10 Å (polarized) | |
Flux at sample | n/s/cm2 |
Typical resolution settings | = 2.5, 5, 10 % |
Q-range | 0.004–0.22 Å−1 ( = 0.3 and 2.0 deg) extendable up to 0.35 Å−1 ( = 3.5 deg) |
Attainable reflectivity |
Beam | Angle (mrad) | Pixel Size (mm) | Beam Selector (BS) Offset from Optical Axis (mm) | Beam Selector (BS) Width (mm) | Max Intensity n/s/cm2 | Count Rate (×106 n/s) |
---|---|---|---|---|---|---|
A | −4.29 | 2.4 | −8.1 | 4.0 | 9.90 | 61.06 |
B | −1.59 | 1.2 | −3.0 | 2.0 | 4.98 | 16.77 |
C | +0.32 | 0.6 | 0.6 | 1.0 | 2.48 | 4.24 |
D | +3.81 | 4.8 | 7.2 | 8.0 | 19.9 | 251 |
Beam Identifier | Beam Width and Sample Slit Size (mm) | Total Neutron Count Rate at Sample Position () | ||
---|---|---|---|---|
Analytical | McStas | VITESS | ||
A | 4 | |||
B | 2 | |||
C | 1 | |||
D | 8 |
Q-resolution | 2.5% | 5.0% | 10.0% |
Wavelength resolution (FWHM triangular) | 1.7% | 3.4% | 6.8% |
Maximum wavelength | 15 Å | ||
Minimum wavelength | 2 Å | ||
Disk radius | 157.5 mm | ||
Slot height | 50 mm | ||
Sector opening | 36.4 degrees | ||
98.8 mm | 195 mm | 381 mm | |
3.95 m | 3.90 m | 3.81 m | |
Maximum frequency | 71.5 Hz | 72.4 Hz | 74.2 Hz |
Operating frequency | 70 Hz (35 Hz assuming 2 slots per disk, 180 degrees apart) | ||
Timing accuracy | 24 s | 48 s | 96 s |
VITESS Module | Parameters |
---|---|
Reflectivity curve R(Q) for spin-up neutrons used m = 5; reflectivity curve R (Q) for spin-down neutrons used m = 7, length 40 cm, width 5 cm, center position 20 cm, inclination 0.75 deg, analysis for OZ direction, output OZ at 40 cm | |
Dimensions 10 cm × 10 cm × 10 cm, number of domains 1000× direction, 500 y-direction, 500 z-direction, magnetic field amplitude 15 Oe, rotation frequency −288,723.6 Hz, permanent/initial value of the Z component of the guide magnetic field 84 Oe |
5 | 10 | 20 | |
2.5% | 0.30 | 0.60 | 1.20 |
5% | 0.60 | 1.20 | 2.40 |
10% | 1.20 | 2.40 | 4.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erhan, R.-V.; de Haan, V.-O.; Frommen, C.; Knudsen, K.D.; Llamas-Jansa, I.; Hauback, B.C. A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources. Instruments 2024, 8, 30. https://doi.org/10.3390/instruments8020030
Erhan R-V, de Haan V-O, Frommen C, Knudsen KD, Llamas-Jansa I, Hauback BC. A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources. Instruments. 2024; 8(2):30. https://doi.org/10.3390/instruments8020030
Chicago/Turabian StyleErhan, Raul-Victor, Victor-Otto de Haan, Christoph Frommen, Kenneth Dahl Knudsen, Isabel Llamas-Jansa, and Bjørn Christian Hauback. 2024. "A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources" Instruments 8, no. 2: 30. https://doi.org/10.3390/instruments8020030
APA StyleErhan, R. -V., de Haan, V. -O., Frommen, C., Knudsen, K. D., Llamas-Jansa, I., & Hauback, B. C. (2024). A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources. Instruments, 8(2), 30. https://doi.org/10.3390/instruments8020030