Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber
Abstract
:1. Introduction
2. The Module-0 Demonstrator
2.1. Detector Description
2.2. The Charge Readout System
2.3. The Light Readout System
3. Charge Readout Performance
3.1. System Overview
3.2. Noise and Stability
3.3. Pixel Charge Response
3.4. Saturation
3.5. Calorimetric Response
4. Light Readout Performance
4.1. Overview
4.2. Calibration
4.3. Time Resolution
4.4. Efficiency
5. Measurements with Cosmic Ray Data Samples
5.1. Electron Lifetime
5.2. Electric Field Uniformity
5.3. Charge–Light Matching
5.4. Correlation of the Charge and Light Yield
5.5. Michel Electrons
5.6. Detector Simulation Validation with Cosmic Ray Tracks
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amerio, S.; Amoruso, S.; Antonello, M.; Aprili, P.; Armenante, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; et al. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. A 2004, 527, 329–410. [Google Scholar] [CrossRef]
- Anderson, C.; Antonello, M.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. J. Instrum. 2012, 7, P10019. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. Design and Construction of the MicroBooNE Detector. J. Instrum. 2017, 12, P02017. [Google Scholar] [CrossRef]
- Abi, B.; Abud, A.A.; Acciarri, R.; Adamov, G.; Adamowski, M.; Adams, D.; Adrien, P.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. J. Instrum. 2020, 15, P12004. [Google Scholar] [CrossRef]
- Abud, A.A.; Abi, B.; Acciarri, R.; Adames, M.; Adamov, G.; Adams, D.; Adinolfi, M.; Aduszkiewicz, A.; Aguilar, J.; Ahmad, Z.; et al. Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum. 2022, 17, P01005. [Google Scholar] [CrossRef]
- Abi, B.; Acciarri, R.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; Alt, C.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE. J. Instrum. 2020, 15, T08008. [Google Scholar] [CrossRef]
- DUNE Collaboration. Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 2021, 5, 31. [Google Scholar] [CrossRef]
- Asaadi, J.; Auger, M.; Berner, R.; Bross, A.; Chen, Y.; Convery, M.; Domine, L.; Drielsma, F.; Dwyer, D.; Ereditato, A.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. Instruments 2020, 4, 6. [Google Scholar] [CrossRef]
- Dwyer, D.; Garcia-Sciveres, M.; Gnani, D.; Grace, C.; Kohn, S.; Kramer, M.; Krieger, A.; Lin, C.; Luk, K.; Madigan, P.; et al. LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. J. Instrum. 2018, 13, P10007. [Google Scholar] [CrossRef]
- Russell, B.; DUNE Collaboration. The 2×2 Demonstrator—A demonstrator for the DUNE ND-LAr Near Detector based on the ArgonCube Design. Proc. Sci. 2024, TAUP2023, 221. [Google Scholar] [CrossRef]
- Auger, M.; Chen, Y.; Ereditato, A.; Goeldi, D.; Kreslo, I.; Lorca, D.; Luethi, M.; Mettler, T.; Sinclair, J.; Weber, M. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments 2018, 2, 3. [Google Scholar] [CrossRef]
- Anfimov, N.; Berner, R.; Butorov, I.; Chetverikov, A.; Fedoseev, D.; Gromov, B.; Korablev, D.; Kreslo, I.; Kuznetsova, K.; Olshevskiy, A.; et al. Development of the Light Collection Module for the Liquid Argon Time Projection Chamber (LArTPC). J. Instrum. 2020, 15, C07022. [Google Scholar] [CrossRef]
- Berner, R.; Chen, Y.; Ereditato, A.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Miao, T.; Piastra, F.; Sinclair, J.R.; et al. First Operation of a Resistive Shell Liquid Argon Time Projection Chamber: A New Approach to Electric-Field Shaping. Instruments 2019, 3, 28. [Google Scholar] [CrossRef]
- Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D.; Baller, B.; et al. The NuMI Neutrino Beam. Nucl. Instrum. Meth. A 2016, 806, 279–306. [Google Scholar] [CrossRef]
- Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; Von Rohr, C.B.U.R.; Sinclair, J.; et al. First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers. Instruments 2020, 4, 9. [Google Scholar] [CrossRef]
- Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C.R.; et al. A pixelated charge readout for Liquid Argon Time Projection Chambers. J. Instrum. 2018, 13, C02008. [Google Scholar] [CrossRef]
- Machado, A.; Segreto, E. ARAPUCA a new device for liquid argon scintillation light detection. J. Instrum. 2016, 11, C02004. [Google Scholar] [CrossRef]
- Serrano, J.; Gaderer, G.; Loschmidt, P.; Cota, E.G.; Lewis, J.H.; Cattin, M.; Alvarez, P.; Oliveira Fernandes Moreira, P.M.; Wlostowski, T.; Dedic, J.; et al. The White Rabbit Project. In Proceedings of the Proc. 12th Int. Conf. on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’09), Kobe, Japan, 12–16 October 2009; JACoW Publishing: Geneva, Switzerland, 2009; pp. 93–95. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise; KDD’96; AAAI Press: Washington, DC, USA, 1996. [Google Scholar]
- Moyal, J. XXX. Theory of ionization fluctuations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1955, 46, 263–280. [Google Scholar] [CrossRef]
- Baller, B. Liquid Argon Properties (Tables and Calculators) Version 4. Available online: https://lar.bnl.gov/properties/ (accessed on 1 July 2021).
- Hamamatsu. MPPC S13360 Series Datasheet. Available online: https://www.hamamatsu.com/resources/pdf/ssd/s13360_series_kapd1052e.pdf (accessed on 1 July 2021).
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers; Forschungszentrum Karlsruhe Report FZKA 6019 (1998); Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1998. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Soleti, S.R.; Dwyer, D.; Vallari, Z. DUNE/larnd-sim. Available online: https://zenodo.org/records/4582721 (accessed on 25 August 2022).
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.; Adames, M.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; et al. Highly-parallelized simulation of a pixelated LArTPC on a GPU. J. Instrum. 2023, 18, P04034. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Adams, C.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons. J. Instrum. 2020, 15, P03022. [Google Scholar] [CrossRef]
- Bettini, A.; Braggiotti, A.; Casagrande, F.; Casoli, P.; Cennini, P.; Centro, S.; Cheng, M.; Ciocio, A.; Cittolin, S.; Cline, D.; et al. A study of the factors affecting the electron lifetime in ultra-pure liquid argon. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1991, 305, 177–186. [Google Scholar] [CrossRef]
- Abi, B.; Acciarri, R.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; Alt, C.; et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology. J. Instrum. 2020, 15, T08010. [Google Scholar] [CrossRef]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons. J. Instrum. 2020, 15, P12037. [Google Scholar] [CrossRef]
- Skwarnicki, T. A study of the Radiative CASCADE Transitions between the Upsilon-Prime and Upsilon Resonances. F31-86-02. Ph.D. Thesis, DESY, Hamburg, Germany, 1986. [Google Scholar]
- Oreglia, M.J. A Study of the Reactions ψ′→γγψ. SLAC-R-236. Ph.D. Thesis, Stanford Linear Accelerator Center, Stanford, CA, USA, 1980. [Google Scholar]
- Gaiser, J.E. Charmonium Spectroscopy from Radiative Decays of the J/ψ and ψ′*. SLAC-R-255. Ph.D. Thesis, Stanford Linear Accelerator Center, Stanford, CA, USA, 1982. [Google Scholar]
- Shibamura, E.; Hitachi, A.; Doke, T.; Takahashi, T.; Kubota, S.; Miyajima, M. Drift velocities of electrons, saturation characteristics of ionization and W-values for conversion electrons in liquid argon, liquid argon-gas mixtures and liquid xenon. Nucl. Instrum. Meth. 1975, 131, 249–258. [Google Scholar] [CrossRef]
- Thomas, J.; Imel, D.A. Recombination of electron-ion pairs in liquid argon and liquid xenon. Phys. Rev. A 1987, 36, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Birks, J.B. Scintillations from Organic Crystals: Specific Fluorescence and Relative Response to Different Radiations. Proc. Phys. Soc. A 1951, 64, 874–877. [Google Scholar] [CrossRef]
- Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; Bekman, B.; Benetti, P.; et al. Study of electron recombination in liquid argon with the ICARUS TPC. Nucl. Instrum. Meth. A 2004, 523, 275–286. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; et al. A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. J. Instrum. 2013, 8, P08005. [Google Scholar] [CrossRef]
- Doke, T.; Hitachi, A.; Kikuchi, J.; Masuda, K.; Okada, H.; Shibamura, E. Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles. Jpn. J. Appl. Phys. 2002, 41, 1538. [Google Scholar] [CrossRef]
- Abud, A.A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; et al. Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector. Phys. Rev. D 2023, 107, 092012. [Google Scholar] [CrossRef]
- Foreman, W.; Acciarri, R.; Asaadi, J.A.; Badgett, W.; Blaszczyk, F.D.M.; Bouabid, R.; Bromberg, C.; Carey, R.; Cavanna, F.; Aleman, J.I.C.; et al. Calorimetry for low-energy electrons using charge and light in liquid argon. Phys. Rev. D 2020, 101, 012010. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; et al. Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC. J. Instrum. 2017, 12, P09014. [Google Scholar] [CrossRef]
- Groom, D.E.; Mokhov, N.V.; Striganov, S.I. Muon stopping power and range tables 10-MeV to 100-TeV. Atom. Data Nucl. Data Tabl. 2001, 78, 183–356. [Google Scholar] [CrossRef]
Fit Parameters | [kV g cm−3 MeV−1] | [kV g cm−3 MeV−1] |
---|---|---|
Charge only fit | 0.820(11) | 0.058(5) |
Light only fit | 0.79(45) | 0.037(4) |
Combined fit | 0.794(8) | 0.045(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed Abud, A.; Abi, B.; Acciarri, R.; Acero, M.A.; Adames, M.R.; Adamov, G.; Adamowski, M.; Adams, D.; Adinolfi, M.; Adriano, C.; et al. Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. Instruments 2024, 8, 41. https://doi.org/10.3390/instruments8030041
Abed Abud A, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Adriano C, et al. Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. Instruments. 2024; 8(3):41. https://doi.org/10.3390/instruments8030041
Chicago/Turabian StyleAbed Abud, A., B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, and et al. 2024. "Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber" Instruments 8, no. 3: 41. https://doi.org/10.3390/instruments8030041
APA StyleAbed Abud, A., Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. A., Alrashed, M., Alton, A., Alvarez, R., ... on behalf of the DUNE Collaboration. (2024). Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. Instruments, 8(3), 41. https://doi.org/10.3390/instruments8030041