An Open-Frame Loading Stage for High-Resolution X-Ray CT
Abstract
:1. Introduction
Existing Concepts for In Situ CT
2. Materials and Methods
2.1. Requirements
2.1.1. X-Ray Setup
2.1.2. Load Frame Design
2.1.3. Mechanical Setup
2.1.4. Electromechanical Control
2.2. Cooling System
2.2.1. Structural Effects Due to Thermal Expansion
2.2.2. Thermal Management of the X-Ray Tube
2.2.3. Thermal Stability
2.3. Concentricity and Stability of the Rotation Axis
2.4. Positioning Repeatability of SOD and SDD
2.5. Accuracy of Force Measurement
2.6. Two-Dimensional Resolution of the System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
CMOS | Complementary metal–oxide–semiconductor |
CT | Computed tomography |
DVC | Digital image correlation |
FDK | Feldkamp–Davis–Kress-type reconstruction algorithm |
FRP | Fibre-reinforced polymer |
FEM | Finite element method |
OSEM | Ordered subset expectation maximisation |
PID | Proportional–integral–derivative (controller) |
PMMA | Polymethyl methacrylate |
POM | Polyoxymethylene |
px | Pixels |
SDD | Source–detector distance |
SOD | Source–object distance |
References
- Zhu, Y.; Saif, T.; DelRio, F.W. Recent Advances in Micro, Nano, and Cell Mechanics. Exp. Mech. 2019, 59, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray computed tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High Performances of Plant Fiber Reinforced Composites—A New Insight from Hierarchical Microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Garcea, S.C.; Wang, Y.; Withers, P.J. X-Ray Computed Tomography of Polymer Composites. Compos. Sci. Technol. 2018, 156, 305–319. [Google Scholar] [CrossRef]
- Talreja, R. 4—Manufacturing Defects in Composites and Their Effects on Performance. In Polymer Composites in the Aerospace Industry, 2nd ed.; Irving, P., Soutis, C., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2020; pp. 83–97. [Google Scholar] [CrossRef]
- Šalplachta, J.; Zikmund, T.; Zemek, M.; Břínek, A.; Takeda, Y.; Omote, K.; Kaiser, J. Complete Ring Artifacts Reduction Procedure for Lab-Based X-ray Nano CT Systems. Sensors 2021, 21, 238. [Google Scholar] [CrossRef] [PubMed]
- Hufenbach, W.; Böhm, R.; Gude, M.; Berthel, M.; Hornig, A.; Ručevskis, S.; Andrich, M. A test device for damage characterisation of composites based on in situ computed tomography. Compos. Sci. Technol. 2012, 72, 1361–1367. [Google Scholar] [CrossRef]
- Garcea, S.C.; Sinclair, I.; Spearing, S.M.; Withers, P.J. Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography. Compos. Sci. Technol. 2017, 149, 81–89. [Google Scholar] [CrossRef]
- Cosmi, F.; Bernasconi, A. Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers. Compos. Sci. Technol. 2013, 79, 70–76. [Google Scholar] [CrossRef]
- Stock, S.R. MicroComputed Tomography: Methodology and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Breunig, T.M.; Stock, S.R.; Brown, R.C. Simple load frame for in situ computed tomography and X-ray tomographic microscopy. Mater. Eval. 1993, 51, 596–600. [Google Scholar]
- Germaneau, A.; Doumalin, P.; Dupré, J.C. Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT E Int. 2008, 41, 407–415. [Google Scholar] [CrossRef]
- Hulme, P.A.; Ferguson, S.J.; Boyd, S.K. Determination of vertebral endplate deformation under load using micro-computed tomography. J. Biomech. 2008, 41, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lachambre, J.; Weck, A.; Réthoré, J.; Buffière, J.Y.; Adrien, J. 3D Analysis of a Fatigue Crack in Cast Iron Using Digital Volume Correlation of X-ray Tomographic Images. In Proceedings of the Imaging Methods for Novel Materials and Challenging Applications; Jin, H., Sciammarella, C., Furlong, C., Yoshida, S., Eds.; Conference Proceedings of the Society for Experimental Mechanics Series. Springer: New York, NY, USA, 2013; Volume 3, pp. 203–209. [Google Scholar] [CrossRef]
- Wan, F.; Liu, R.; Wang, Y.; Cao, Y.; Zhang, C.; Marrow, T.J. In Situ Observation of Compression Damage in a 3D Needled-Punched Carbon Fiber-Silicon Carbide Ceramic Matrix Composite. Compos. Struct. 2019, 210, 189–201. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Luo, Q.; Li, Q.; Sun, G. Characterizing Damage Evolution in Fiber Reinforced Composites Using In-Situ X-ray Computed Tomography, Deep Machine Learning and Digital Volume Correlation (DVC). Compos. Sci. Technol. 2024, 254, 110650. [Google Scholar] [CrossRef]
- 20kN In-Situ, Tension, Compression & Torsion Rig for Synchrotron & X-Ray CT Imaging. Deben, Woolpit, UK. Available online: https://deben.co.uk/tensile-testing/open-frame-torsion-tension-and-compression-stage/ (accessed on 28 November 2024).
- Tomičević, Z.; Smaniotto, B.; Bouterf, A.; Jailin, C.; Mendoza-Quispe, A.; Hild, F. In-Situ Cyclic Experiment on Glass Fiber Reinforced Composites Monitored via Micro-Tomography; University of West Bohemia: Pilsen, Czech Republic, 2019. [Google Scholar]
- Ballabriga, R.; Campbell, M.; Heijne, E.; Llopart, X.; Tlustos, L.; Wong, W. Medipix3: A 64 k Pixel Detector Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 633, S15–S18. [Google Scholar] [CrossRef]
- Rolling Bearings—Radial Bearings—Geometrical Product Specifications (GPS) and Tolerance Values. Available online: https://www.iso.org/standard/80376.html (accessed on 28 November 2024).
- Grbl—An Open Source, Embedded, High Performance g-Code-Parser. Available online: https://github.com/grbl/grbl (accessed on 28 November 2024).
- Orhan, K. (Ed.) Micro-Computed Tomography (Micro-CT) in Medicine and Engineering; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bushberg, J.T.; Seiberg, J.A.; Leidholdt, E.M., Jr.; Boone, J.M. The Essential Physics of Medical Imaging; Wolters Kluwer Health: Philadelphia, PA, USA, 2020. [Google Scholar]
- Zhou, W.; Majidi, K.; Brankov, J.G. Analyzer-Based Phase-Contrast Imaging System Using a Micro Focus X-Ray Source. Rev. Sci. Instrum. 2014, 85, 085114. [Google Scholar] [CrossRef] [PubMed]
- Noo, F.; Clackdoyle, R.; Mennessier, C.; White, T.A.; Roney, T.J. Analytic Method Based on Identification of Ellipse Parameters for Scanner Calibration in Cone-Beam Tomography. Phys. Med. Biol. 2000, 45, 3489. [Google Scholar] [CrossRef] [PubMed]
- Plappert, D.; Ganzenmüller, G.C.; May, M.; Beisel, S. Mechanical Properties of a Unidirectional Basalt-Fiber/Epoxy Composite. J. Compos. Sci. 2020, 4, 101. [Google Scholar] [CrossRef]
- SpeCTive Toolbox, Version 2024.01.30.1635. Available online: https://www.spective.de (accessed on 28 November 2024).
Run-out/μm | Axial Error/μm | |
---|---|---|
Top | 1 | 3 |
Bottom | <3 | 3 |
X-ray configuration | Tube voltage | 50 kVp |
Tube current | 140 μA | |
Target current | 10 μA | |
Acquisition settings | Integration time | 5 × 1 s |
Projection angles | 1000 | |
Geometric configuration | SOD (source–object distance) | 5.58 mm |
SDD (Source–detector distance) | 398 mm | |
Magnification | 71.2 | |
Detector pixel size | 49.5 μm | |
Effective pixel size | 695 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plappert, D.; Schütz, M.; Ganzenmüller, G.C.; Fischer, F.; Campos, M.; Procz, S.; Fiederle, M.; Hiermaier, S. An Open-Frame Loading Stage for High-Resolution X-Ray CT. Instruments 2024, 8, 52. https://doi.org/10.3390/instruments8040052
Plappert D, Schütz M, Ganzenmüller GC, Fischer F, Campos M, Procz S, Fiederle M, Hiermaier S. An Open-Frame Loading Stage for High-Resolution X-Ray CT. Instruments. 2024; 8(4):52. https://doi.org/10.3390/instruments8040052
Chicago/Turabian StylePlappert, David, Michael Schütz, Georg C. Ganzenmüller, Frank Fischer, Mario Campos, Simon Procz, Michael Fiederle, and Stefan Hiermaier. 2024. "An Open-Frame Loading Stage for High-Resolution X-Ray CT" Instruments 8, no. 4: 52. https://doi.org/10.3390/instruments8040052
APA StylePlappert, D., Schütz, M., Ganzenmüller, G. C., Fischer, F., Campos, M., Procz, S., Fiederle, M., & Hiermaier, S. (2024). An Open-Frame Loading Stage for High-Resolution X-Ray CT. Instruments, 8(4), 52. https://doi.org/10.3390/instruments8040052