The Effectiveness of Mass Transfer in the MHD Upper-Convected Maxwell Fluid Flow on a Stretched Porous Sheet near Stagnation Point: A Numerical Investigation
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Technique
4. Numerical Results and Consultation
5. Conclusions
- The variation in M for the velocity distribution remarkably slowed down while enhancing the concentration magnitude.
- The variation in decelerated the velocity profile, although it enhanced the concentration magnitudes.
- The variation in notably boosted the velocity magnitudes while it slowed down the concentration magnitudes.
- Raising the numeric value in turned out to decelerate the distribution while enhancing the concentration magnitudes.
- By enlarging , there were significant slowdowns in the velocity and concentration distributions.
- The concentration magnitudes successively decelerated across both parametric quantities and .
- The concentration field had contradictory conduct across () and ().
- The skin friction coefficient decelerated, whereas the Sherwood number enhanced across the variation in .
Funding
Conflicts of Interest
References
- Tan, W.C.; Pan, W.; Xu, M. A note on unsteady flows of viscoelastic fluid with fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech. 2003, 38, 615–619. [Google Scholar]
- Fetecau, C.; Fetecau, C. A new exact solution for the flow of a Maxwell fluid past an infinite plate. Int. J. Non-Linear Mech. 2003, 38, 423–427. [Google Scholar] [CrossRef]
- Swati, M.P.; Arif, G.M.; Wazed, P.M. Effects of transpiration on unsteady MHD flow of an UCM fluid passing through a stretching surface in the presence of a first order chemical reaction. Chin. Phys. B 2013, 22, 124701. [Google Scholar]
- Prasad, K.V.; Sujatha, A.; Vajravelu, K.; Pop, I. MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties. Meccanica 2012, 47, 1425–1439. [Google Scholar] [CrossRef]
- Anwar, T.; Kumam, P.; Watthayu, W. Influence of Ramped Wall Temperature and Ramped Wall Velocity on Unsteady Magnetohydrodynamic Convective Maxwell Fluid Flow. Symmetry 2020, 12, 392. [Google Scholar] [CrossRef] [Green Version]
- Shah, Z.; Alzahrani, E.; Jawad, M.; Khan, U. Microstructure and Inertial Characteristics of MHD Suspended SWCNTs and MWCNTs Based Maxwell Nanofluid Flow with Bio-Convection and Entropy Generation Past a Permeable Vertical Cone. Coatings 2020, 10, 998. [Google Scholar] [CrossRef]
- Ahmed, J.; Khan, M.; Ahmad, L. MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity. Chin. J. Phys. 2019, 60, 22–34. [Google Scholar] [CrossRef]
- Chen, X.H.; Yang, W.D.; Zhang, X.R.; Liu, F.W. Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional Maxwell model. Appl. Math. Lett. 2019, 95, 143–149. [Google Scholar] [CrossRef]
- Na, W.; Shah, N.A.; Tlili, I.; Siddique, I. Maxwell fluid flow between vertical plates with damped shear and thermal flux: Free convection. Chin. J. Phys. 2020, 65, 367–376. [Google Scholar] [CrossRef]
- Shehzad, S.A.; Mabood, F.; Rauf, A.; Tlili, I. Forced convective Maxwell fluid flow through rotating disk under the thermophoretic particles motion. Int. Commun. Heat Mass Transf. 2020, 116, 104693. [Google Scholar] [CrossRef]
- Andablo-Reyes, E.; Hidalgo-Alvarez, R.; de-Vicente, J. Controlling friction using magnetic nanofluids. Soft Matter 2011, 7, 880–883. [Google Scholar] [CrossRef]
- Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl. Math. Model. 2013, 37, 1451–1467. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Ellahi, R.; Zeeshan, A. Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J. Mol. Liq. 2016, 222, 101–108. [Google Scholar] [CrossRef]
- Zaidi, Z.A.; Mohyud-Din, S.T. Effect of joule heating and MHD in the presence of convective boundary condition for upper convected Maxwell fluid through wall jet. J. Mol. Liq. 2017, 230, 230–234. [Google Scholar] [CrossRef]
- Hassan, M.; Zeeshan, A.; Majeed, A.; Ellahi, R. Particle shape effects on Ferrofluids flow and heat transfer under influence of flow oscillating magnetic field. J. Magn. Magn. Mater. 2017, 443, 36–44. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Sarris, I.; Lorenzini, G. Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int. J. Heat Mass Transf. 2018, 127, 1327–1337. [Google Scholar] [CrossRef]
- Krishna, M.V.; Chamkha, A.J. MHD peristaltic rotating flow of a couple stress fluid through a porous medium with wall and slip effects. Spec. Top. Rev. Porous Media 2019, 10, 245–258. [Google Scholar] [CrossRef]
- Makinde, O.D.; Khan, W.A.; Culham, J.R. MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. Int. J. Heat Mass Transf. 2016, 93, 595–604. [Google Scholar] [CrossRef]
- Shah, Z.; Sheikholeslami, M.; Ikramullah, K.P. Simulation of entropy optimization and thermal behavior of nanofluid through the porous media. Int. Commun. Heat Mass Transf. 2020. [Google Scholar] [CrossRef]
- Khan, U.; Ahmed, N.; Mohyud-Din, S.T.; Bin-Mohsin, B. Non-linear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput. Appl. 2017, 28, 2041–2050. [Google Scholar] [CrossRef]
- Shah, Z.; Sheikholeslami, M.; Ikramullah; Kumam, P. Influence of nanoparticles inclusion into water on convective magneto hydrodynamic flow with heat transfer and entropy generation through permeable domain. Case Stud. Therm. Eng. 2020, 21, 100732. [Google Scholar] [CrossRef]
- Khan, A.S.; Nie, Y.; Shah, Z. Impact of Thermal Radiation and Heat Source/Sink on MHD Time-Dependent Thin-Film Flow of Oldroyed-B, Maxwell, and Jeffry Fluids over a Stretching Surface. Processes 2019, 4, 191. [Google Scholar] [CrossRef] [Green Version]
- Aslani, K.E.; Benos, L.; Tzirtzilakis, E.; Sarris, I. Micromagnetorotation of MHD Micropolar Flows. Symmetry 2020, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Liu, I.C. A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. Int. Commun. Heat Mass Transf. 2015, 32, 1075–1084. [Google Scholar] [CrossRef]
- Cortell, R. Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet. Chem. Eng. Process. Process. Intensif. 2007, 46, 982–989. [Google Scholar] [CrossRef]
- Akyilidiz, F.T.; Bellout, H.; Vajravelu, K. Diffusion of chemical reactive species in porous medium over a stretching sheet. J. Math. Anal. Appl. 2006, 320, 322–339. [Google Scholar] [CrossRef] [Green Version]
- Layek, G.C.; Mukhopadhyay, S.S.A. Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Int. Commun. Heat Mass Transf. 2007, 34, 347–356. [Google Scholar] [CrossRef]
- Makinde, O.D. MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem. Eng. Commun. 2011, 198, 590–608. [Google Scholar] [CrossRef]
- Beg, O.A.; Makinde, O.D. Viscoelastic flow and species transfer in a Dacian high-permeable channel. J. Petrol. Sci. Eng. 2011, 76, 93–99. [Google Scholar] [CrossRef]
- Abbas, M.A.; Bhatti, M.M.; Sheikholeslami, M. Peristaltic Propulsion of Jeffrey Nanofluid with Thermal Radiation and Chemical Reaction Effects. Inventions 2019, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.A.; Culham, J.R.; Makinde, O.D. Combined heat and mass transfer of third-grade nanofluids over a convectively-heated stretching permeable surface. Can. J. Chem. Eng. 2015, 93, 1880–1888. [Google Scholar] [CrossRef]
- Deebani, W.; Tassaddiq, A.; Shah, Z.; Dawar, A.; Ali, F. Hall Effect on Radiative Casson Fluid Flow with Chemical Reaction on a Rotating Cone through Entropy Optimization. Entropy 2020, 22, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khaled, K.; Khan, S.U. Thermal Aspects of Casson Nanoliquid with Gyrotactic Microorganisms, Temperature-Dependent Viscosity, and Variable Thermal Conductivity: Bio-Technology and Thermal Applications. Inventions 2020, 5, 39. [Google Scholar] [CrossRef]
- Makinde, O.D.; Sibanda, P. Effects of chemical reaction on boundary layer flow past a vertical stretching surface in the presence of internal heat generation. Int. J. Numer. Meth. Heat Fluid Flow 2011, 21, 779–792. [Google Scholar] [CrossRef]
- Eid, M.R.; Mahny, K.L. Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption. Adv. Powder Technol. 2017, 28, 3063–3073. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sreedevi, P.; Chamkha, A.J. Magnetohydrodynamic (MHD) boundary layer heat and mass transfer characteristics of nanofluid over a vertical cone under convective boundary condition. Propuls. Power Res. 2018, 7, 308–319. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, M.A.; Rashidi, M.M. A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Appl. Math. Comput. 2018, 316, 381–389. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M. A New Numerical Simulation of MHD Stagnation-Point Flow over a Permeable Stretching/Shrinking Sheet in Porous Media with Heat Transfer. Iran. J. Sci. Technol. Trans. A Sci. 2016, 41, 779–785. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Shahid, A.; Rashidi, M.M. Numerical Simulation of Fluid flow over a shrinking porous sheet by Successive linearization method. Alex. Eng. J. 2016, 55, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Shahid, A.; Bhatti, M.M.; Beg, O.A.; Kadir, A. Numerical Study of Radiative Maxwell Viscoelastic Magnetized Flow from a Stretching Permeable Sheet with the Cattaneo–Christov Heat Flux Model. Neural Comput. Appl. 2018, 30, 3467–3478. [Google Scholar] [CrossRef]
- Shahid, A.; Zhou, Z.; Hassan, M.; Bhatti, M.M. Computational Study of Magnetized Blood Flow in the Presence of Gyrotactic Microorganisms Propelled through Permeable Capillary in a Stretching Motion. Int. J. Multiscale Comput. Eng. 2018, 16, 303–320. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.S. Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid towards a Shrinking Sheet. Entropy 2016, 18, 200. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Abbas, Z.; Ali, N. MHD flow and mass transfer of a upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species. Phys. Lett. A 2008, 372, 4698–4704. [Google Scholar] [CrossRef]
- Aliakbar, V.; Pahlavan, A.A.; Sadeghy, K. The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 779–794. [Google Scholar] [CrossRef]
- Hayat, T.; Abbas, Z.; Sajid, M. MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos Solitons Fractals 2009, 39, 840–848. [Google Scholar] [CrossRef]
- Pahlavan, A.A.; Aliakbar, V.; Farahani, F.V.; Sadeghy, K. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 473–488. [Google Scholar] [CrossRef]
- Pahlavan, A.A.; Sadeghy, K. On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1355–1365. [Google Scholar] [CrossRef]
- Hayat, T.; Awais, M.; Qasim, M.; Hendi, A.A. Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. Int. J. Heat Mass Transf. 2011, 54, 3777–3782. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, A. The Effectiveness of Mass Transfer in the MHD Upper-Convected Maxwell Fluid Flow on a Stretched Porous Sheet near Stagnation Point: A Numerical Investigation. Inventions 2020, 5, 64. https://doi.org/10.3390/inventions5040064
Shahid A. The Effectiveness of Mass Transfer in the MHD Upper-Convected Maxwell Fluid Flow on a Stretched Porous Sheet near Stagnation Point: A Numerical Investigation. Inventions. 2020; 5(4):64. https://doi.org/10.3390/inventions5040064
Chicago/Turabian StyleShahid, Anwar. 2020. "The Effectiveness of Mass Transfer in the MHD Upper-Convected Maxwell Fluid Flow on a Stretched Porous Sheet near Stagnation Point: A Numerical Investigation" Inventions 5, no. 4: 64. https://doi.org/10.3390/inventions5040064
APA StyleShahid, A. (2020). The Effectiveness of Mass Transfer in the MHD Upper-Convected Maxwell Fluid Flow on a Stretched Porous Sheet near Stagnation Point: A Numerical Investigation. Inventions, 5(4), 64. https://doi.org/10.3390/inventions5040064