Grading of Scots Pine Seeds by the Seed Coat Color: How to Optimize the Engineering Parameters of the Mobile Optoelectronic Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Samples
2.2. Design of Experiment
- choose the type of experiment matrix;
- select levels of factor variation, encode input variables x1, x2, x3 and build a planning matrix;
- complete the planning matrix in coded variables, taking into account quadratic and paired interactions, and supplement it with columns of average response values for each flower-seed fraction;
- calculate the coefficients of the regression equation;
- check the calculated coefficients for significance, first determining the variance of reproducibility, and obtain the regression equation in the encoded variables;
- check the adequacy of the received model;
- interpretation of the resulting model was then performed;
- write out the regression equation in natural variables.
3. Results
3.1. The Choice of the Tri-Factorial Design, Factors and Levels of Their Variation
3.2. Implementation of a Tri-Factor Design
- is the average value of the response from the experiment;is the response value calculated from the regression equation;
- n is the number of repetitions of each experience from the planning matrix, n = 3;
- N is the number of experiments according to the planning matrix, N = 20;
- P is the number of regression coefficients of the analyzed mode, P = 8.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ivetić, V.; Devetakovic, J.; Nonić, M.; Stanković, D.; Šijačić-Nikolić, M. Genetic Diversity and Forest Reproductive Material—From Seed Source Selection to Planting. iForest Biogeosci. For. 2016, 9, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Grossnickle, S.C.; Solutions, N.; Ivetić, V. University of Belgrade—Faculty of Forestry Direct Seeding in Reforestation—A Field Performance Review. Reforesta 2017, 4, 94–142. [Google Scholar] [CrossRef]
- Freitas, M.G.; Rodrigues, S.B.; Campos-Filho, E.M.; Carmo, G.H.P.D.; Da Veiga, J.M.; Junqueira, R.G.; Vieira, D.L. Evaluating the success of direct seeding for tropical forest restoration over ten years. For. Ecol. Manag. 2019, 438, 224–232. [Google Scholar] [CrossRef]
- Löf, M.; Castro, J.; Engman, M.; Leverkus, A.B.; Madsen, P.; Reque, J.A.; Villalobos, A.; Gardiner, E.S. Tamm Review: Direct seeding to restore oak (Quercus spp.) forests and woodlands. For. Ecol. Manag. 2019, 448, 474–489. [Google Scholar] [CrossRef]
- Willoughby, I.H.; Jinks, R.L.; Forster, J. Direct seeding of birch, rowan and alder can be a viable technique for the restoration of upland native woodland in the UK. Forestry 2019, 92, 324–338. [Google Scholar] [CrossRef]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, N.; Novikov, A.; Sokolov, S.; Tishchenko, E. A proposed technology to ensure high-precision aerial seeding of certified seeds. IOP Conf. Ser. Earth Environ. Sci. 2020, 595, 012066. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Ma, L.; Lv, R.; Yu, H.; Bai, S.; Kang, Y. Comparison of tree growth and undergrowth development in aerially seeded and planted Pinus tabulaeformis forests. Front. For. China 2009, 4, 283–290. [Google Scholar] [CrossRef]
- Peppin, D.; Fulé, P.Z.; Sieg, C.H.; Beyers, J.L.; Hunter, M.E. Post-wildfire seeding in forests of the western United States: An evidence-based review. For. Ecol. Manag. 2010, 260, 573–586. [Google Scholar] [CrossRef]
- Novikov, I.A.; Ersson, B.T. Aerial seeding of forests in Russia: A selected literature analysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 226, 012051. [Google Scholar] [CrossRef]
- Levack, H.H. The Kaingaroa Air Sowing Era 1960-71. N. Z. J. For. 1973, 18, 104–108. [Google Scholar]
- Sokolov, S.V.; Marshakov, D.V.; Novikov, A. The Current Spectrum Formation of a Non-Periodic Signal: A Differential Approach. Inventions 2020, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, S.V.; Novikov, A. Adaptive estimation of UVs navigation parameters by irregular inertial-satellite measurements. Int. J. Intell. Unmanned Syst. 2020. [Google Scholar] [CrossRef]
- Sokolov, S.V.; Novikov, A.; Ivetic, V. Determining the Initial Orientation for Navigation and Measurement Systems of Mobile Apparatus in Reforestation. Inventions 2019, 4, 56. [Google Scholar] [CrossRef] [Green Version]
- Polyakova, M.V.; Bayandurova, A.A.; Sokolov, S.V. Use of Irregular Exact Measurements in a Problem of an Adaptive Filtration. In Proceedings of the 2nd International Conference on Intelligent Information Technologies for Industry, IITI 2017, Varna, Bulgaria, 14–16 September 2018; pp. 379–387. [Google Scholar]
- Jahnke, S.; Roussel, J.; Hombach, T.; Kochs, J.; Fischbach, A.; Huber, G.; Scharr, H. phenoSeeder—A robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 2016, 172, 1358–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drapalyuk, M.V.; Novikov, A.I. Analysis of operational mechanized technologies of seed separation under artificial forest restoration. For. Eng. J. 2018, 8, 207–220. [Google Scholar]
- Mansuy, N.; Burton, P.J.; Stanturf, J.; Beatty, C.; Mooney, C.; Besseau, P.; Degenhardt, D.; Macafee, K.; Lapointe, R. Scaling up forest landscape restoration in Canada in an era of cumulative effects and climate change. For. Policy Econ. 2020, 116, 102177. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Elliott, S.; Chairuangsri, S.; Kuaraksa, C.; Sangkum, S.; Sinhaseni, K.; Shannon, D.; Nippanon, P.; Manohan, B. Collaboration and Conflict—Developing Forest Restoration Techniques for Northern Thailand’s Upper Watersheds Whilst Meeting the Needs of Science and Communities. Forestry 2019, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Sabogal, C.; Besacier, C.; McGuire, D. Forest and landscape restoration: Concepts, approaches and challenges for implementation. Unasylva 2015, 66, 3–10. [Google Scholar]
- Novikov, A.; Sokolov, S.V.; Drapalyuk, M.; Zelikov, V.; Ivetić, V. Performance of Scots Pine Seedlings from Seeds Graded by Colour. Forestry 2019, 10, 1064. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.I.; Novikova, T.P. Non-Destructive Quality Control of Forest Seeds in Globalization: Problems and Prospects of Output Innovative Products. In Proceedings of the Globalization and Its Socio-Economic Consequences, Rajecke Teplice, Slovakia, 21–22 October 2018; pp. 1260–1267. [Google Scholar]
- Novikov, A.; Drapalyuk, M.; Dornyak, O.; Zelikov, V.; Ivetic, V. The Effect of Motion Time of a Scots Pine Single Seed on Mobile Optoelectronic Grader Efficiency: A Mathematical Patterning. Inventions 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Tigabu, M.; Odén, P.C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy. New For. 2003, 25, 163–176. [Google Scholar] [CrossRef]
- Novikov, A.I.; Lisitsyn, V.I.; Tigabu, M.; Tylek, P.; Chuchupal, S.V. Detection of Single Seed in Optoelectronic System of Mobile Grader: Mathematical Modeling. Forests. Under Review.
- Sokolov, S.V.; Kamenskij, V.V.; Novikov, A.I.; Ivetić, V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer. Inventions 2019, 4, 61. [Google Scholar] [CrossRef] [Green Version]
- Albekov, A.U.; Drapalyuk, M.V.; Morkovina, S.S.; Vovchenko, N.G.; Novikov, A.I.; Sokolov, S.V.; Novikova, T.P. Device for Seeds Sorting. RU Patent 2 682 854, 21 March 2019. [Google Scholar]
- Tinus, R.W. Effects of dewinging, soaking, stratification, and growth regulators on germination of green ash seed. Can. J. For. Res. 1982, 12, 931–935. [Google Scholar] [CrossRef]
- Douglas, J.L.; Grabowski, J.M.; Keith, B.C. A comparison of seed cleaning techniques for improving quality of eastern gamagrass seed. Seed Sci. Technol. 2000, 28, 163–167. [Google Scholar]
- Novikov, A. Visible wave spectrometric features of scots pine seeds: The basis for designing a rapid analyzer. IOP Conf. Ser. Earth Environ. Sci. 2019, 226, 012064. [Google Scholar] [CrossRef]
- Cleland, T.M. Practical Description of the Munsell Color System, with Suggestions for Its Use; Munsell Color Co.: Boston, MA, USA, 1921. [Google Scholar]
- GOST. RF 13053.3, Seed of Trees and Shrubs. Methods for Determination of Moisture; Standards Publ.: Moscow, Russia, 1986. [Google Scholar]
- GOST. RF 13056.6-97, Seeds of Trees and Shrubs. Method for Determination of Germination; Standards Publ.: Moscow, Russia, 1998. [Google Scholar]
- Nikitin, S.; Novikov, A.; Novikova, T. Using foresight to improve the efficiency of process equipment design. E3S Web Conf. 2020, 164, 08028. [Google Scholar] [CrossRef]
- Adler, Y.P.; Markova, Y.V.; Granovsky, Y.V. Experiment Planning When Searching for Optimal Conditions; Nauka: Moscow, Russia, 1976. [Google Scholar]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 13-978-0471-71813-0. [Google Scholar]
- Rohlf, F.J.; Sokal, R.R. Statistical Tables; Macmillan: New York, NY, USA, 1995; ISBN 071672412X. [Google Scholar]
- Sviridov, L.T. Increase of Efficiency in Mechanized Processes of Coniferous Seeds Production. Ph.D. Thesis, Moscow Forestry Institute, Moscow, Russia, 1992. [Google Scholar]
- Knyazev, A.V. Substantiation of Parameters and Development of Design Multi-Stage Roller Separator for the Sorting of Coniferous Seeds. Ph.D. Thesis, Voronezh State University of Forestry and Technologies, Voronezh, Russia, 2001. [Google Scholar]
Parameter | Seed-Color Fraction | ||
---|---|---|---|
Light (L) | Light-Dark (LD) | Dark (D) | |
Munsell’s [32] color system 1 | 4.9 YR 7.5/4.2 | 9.8 YR 6.0/4.1 | 7.3 YR 2.6/1.7 |
CMYKOG’s color system 1 | C0, M0, Y35, K26, Or10, G0 | C0, M0, Y14, K40, Or36, G6 | C63, M70, Y85, K54, Or0, G0 |
Fraction weight, g (% of the seedlot’s initial mass) | 361 (24.07) | 1006 (67.07) | 133 (8.86) |
1000 seeds weight 2, g at humidity 3 (W, %) | 6.434 (8.36) | 7.869 (7.84) | 7.427 (10.66) |
Germination 4, % | 96.5 | 96.0 | 94.5 |
Designation | Levels of Factor Variation | Interval | |||||
---|---|---|---|---|---|---|---|
Natural. | Coded. | −α | −1 | 0 | +1 | +α | |
λr(VIS), HM | x1 | 600 | 640 | 700 | 760 | 800 | 60 |
α, degree | x2 | 35 | 39 | 45 | 51 | 55 | 6 |
hsp, m | x3 | 0.10 | 0.14 | 0.20 | 0.26 | 0.30 | 0.06 |
; ; |
Experience Number | Design Matrix | Results of Experience | |||||
---|---|---|---|---|---|---|---|
Factors | |||||||
x1 (λr(VIS)) | x2 (α) | x3 (hsp) | y1 (D) | y1 (L) | y1 (LD) | ||
1 | +1 | +1 | +1 | 0.82 | 0.86 | 0.85 | 0.8433 |
2 | −1 | +1 | −1 | 0.8 | 0.83 | 0.87 | 0.8333 |
3 | +1 | −1 | −1 | 0.85 | 0.89 | 0.88 | 0.8733 |
4 | −1 | −1 | +1 | 0.78 | 0.8 | 0.82 | 0.8000 |
5 | +1 | +1 | −1 | 0.81 | 0.85 | 0.83 | 0.8300 |
6 | −1 | +1 | +1 | 0.86 | 0.89 | 0.87 | 0.8733 |
7 | +1 | −1 | +1 | 0.8 | 0.81 | 0.78 | 0.7967 |
8 | −1 | −1 | −1 | 0.79 | 0.78 | 0.75 | 0.7733 |
9 | 0 | 0 | 0 | 1.00 | 1.00 | 0.98 | 0.9933 |
10 | 0 | 0 | 0 | 0.98 | 1.00 | 0.99 | 0.9900 |
11 | 0 | 0 | 0 | 0.99 | 0.99 | 0.99 | 0.9900 |
12 | 0 | 0 | 0 | 1.00 | 0.99 | 1.00 | 0.9967 |
13 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.0000 |
14 | 0 | 0 | 0 | 0.98 | 0.99 | 0.99 | 0.9867 |
15 | +1.682 | 0 | 0 | 0.95 | 0.98 | 0.97 | 0.9667 |
16 | −1.682 | 0 | 0 | 0.94 | 0.96 | 0.98 | 0.9600 |
17 | 0 | +1.682 | 0 | 0.89 | 0.87 | 0.88 | 0.8800 |
18 | 0 | −1.682 | 0 | 0.88 | 0.89 | 0.87 | 0.8800 |
19 | 0 | 0 | +1.682 | 0.93 | 0.97 | 0.92 | 0.9400 |
20 | 0 | 0 | −1.682 | 0.94 | 0.95 | 0.91 | 0.9333 |
Experience Number | Factors | Interactions | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x1x2 | x2x3 | x1x3 | (x1)2 | (x2)2 | (x3)2 | ||
1 | +1 | +1 | +1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.8433 |
2 | −1 | +1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 0.8333 |
3 | +1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 0.8733 |
4 | −1 | −1 | +1 | 1 | −1 | −1 | 1 | 1 | 1 | 0.8000 |
5 | +1 | +1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | 0.8300 |
6 | −1 | +1 | +1 | −1 | 1 | −1 | 1 | 1 | 1 | 0.8733 |
7 | +1 | −1 | +1 | −1 | −1 | 1 | 1 | 1 | 1 | 0.7967 |
8 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.7733 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9933 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9900 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9900 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9967 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.0000 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9867 |
15 | +1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0 | 0 | 0.9667 |
16 | −1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0 | 0 | 0.9600 |
17 | 0 | +1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0 | 0.8800 |
18 | 0 | −1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0 | 0.8800 |
19 | 0 | 0 | +1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0.9400 |
20 | 0 | 0 | −1.682 | 0 | 0 | 0 | 0 | 0 | 2.829 | 0.9333 |
b0 | b1 | b2 | b3 | b12 | b23 | b13 | b11 | b22 | b33 | RE-coefs |
0.9958 | 0.005458 | 0.01001 | 0.001065 | −0.0163 | 0.0129 | −0.0163 | −0.03039 | −0.05985 | −0.03982 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikov, A.I.; Zolnikov, V.K.; Novikova, T.P. Grading of Scots Pine Seeds by the Seed Coat Color: How to Optimize the Engineering Parameters of the Mobile Optoelectronic Device. Inventions 2021, 6, 7. https://doi.org/10.3390/inventions6010007
Novikov AI, Zolnikov VK, Novikova TP. Grading of Scots Pine Seeds by the Seed Coat Color: How to Optimize the Engineering Parameters of the Mobile Optoelectronic Device. Inventions. 2021; 6(1):7. https://doi.org/10.3390/inventions6010007
Chicago/Turabian StyleNovikov, Arthur I., Vladimir K. Zolnikov, and Tatyana P. Novikova. 2021. "Grading of Scots Pine Seeds by the Seed Coat Color: How to Optimize the Engineering Parameters of the Mobile Optoelectronic Device" Inventions 6, no. 1: 7. https://doi.org/10.3390/inventions6010007
APA StyleNovikov, A. I., Zolnikov, V. K., & Novikova, T. P. (2021). Grading of Scots Pine Seeds by the Seed Coat Color: How to Optimize the Engineering Parameters of the Mobile Optoelectronic Device. Inventions, 6(1), 7. https://doi.org/10.3390/inventions6010007