Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field
Abstract
:1. Introduction
2. Formulation of the Problem
3. Method of Solution
4. Results and Discussion
5. Conclusions
- Velocity profile increases as porosity, thermal, and mass Grashof number increases.
- Temperature profile decreases as diminishes.
- Concentration profile increases as Sc increases.
- Sherwood’s Nusselt number rises as values broaden. With the expanding values of Sc, the number grows.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
/ | |
Appendix A
References
- De la Guerra, P.A.; Poiré, E.C. Pulsatile parallel flow of air and a viscoelastic fluid with multiple characteristic times. An application to mucus in the trachea and the frequency of cough. J. Phys. Condens. Matter. 2022, 34, 35561687. [Google Scholar] [CrossRef]
- Misra, J.; Adhikary, S. MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction. Alex. Eng. J. 2016, 55, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.M.; Birla, R.K. Pulsatile flow conditioning of three-dimensional bioengineered cardiac ventricle. Biofabrication 2017, 9, 015003. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, S.I.; Bhatti, M.M.; Zeeshan, A.; Riaz, A.; Bég, O.A. Metachronal propulsion of a magnetised particle-fluid suspension in a ciliated channel with heat and mass transfer. Phys. Scr. 2019, 94, 115301. [Google Scholar] [CrossRef]
- Abbasi, Z.; Boozarjomehry, R.B. Various reduced-order surrogate models for fluid flow and mass transfer in human bronchial tree. Biomech. Model. Mechanobiol. 2021, 20, 2203–2226. [Google Scholar] [CrossRef]
- Kori, J. Pratibha Effect of periodic permeability of lung airways on the flow dynamics of viscous fluid. Nanosyst. Phys. Chem. Math. 2019, 10, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Kori, J. Pratibha Numerical Simulation of Dusty Air Flow and Particle Deposition Inside Permeable Alveolar Duct. Int. J. Appl. Comput. Math. 2019, 5, 17. [Google Scholar] [CrossRef]
- Pratibha, K.J. Simulation and Modeling for Aging and Particle Shape Effect on Airflow Dynamics and Filtration Efficiency of Human Lung. J. Appl. Fluid Mech. 2019, 12, 1273–1285. [Google Scholar]
- Krishna, M.V.; Swarnalathamma, B.; Prakash, J. Heat and Mass Transfer on Unsteady MHD Oscillatory Flow of Blood Through Porous Arteriole. In Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering; Singh, M., Kushvah, B., Seth, G., Prakash, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 207–224. [Google Scholar] [CrossRef]
- Akbar, N.; Tripathi, D.; Khan, Z.; Bég, O.A. Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia. Math. Biosci. 2018, 301, 121–128. [Google Scholar] [CrossRef]
- Ma, Z.; Li, B.; Peng, J.; Gao, D. Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022, 14, 434. [Google Scholar] [CrossRef]
- Nazeer, M.; Hussain, F.; Hameed, M.; Khan, M.I.; Ahmad, F.; Malik, M.; Shi, Q.-H. Development of mathematical modeling of multi-phase flow of Casson rheological fluid: Theoretical approach. Chaos Solitons Fractals 2021, 150, 111198. [Google Scholar] [CrossRef]
- Ramesh, K.; Tripathi, D.; Bég, O.A. Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids. Propuls. Power Res. 2019, 8, 221–233. [Google Scholar] [CrossRef]
- Sedaghat, M.H.; Bagheri, A.A.H.; Shahmardan, M.M.; Norouzi, M.; Khoo, B.C.; Jayathilake, P.G. A Hybrid Immersed Boundary-Lattice Boltzmann Method for Simulation of Viscoelastic Fluid Flows Interaction with Complex Boundaries. Commun. Comput. Phys. 2021, 29, 1411–1445. [Google Scholar] [CrossRef]
- Munawar, S.; Saleem, N. Entropy Analysis of an MHD Synthetic Cilia Assisted Transport in a Microchannel Enclosure with Velocity and Thermal Slippage Effects. Coatings 2020, 10, 414. [Google Scholar] [CrossRef]
- Nazeer, M.; Hussain, F.; Ahmad, F.; Iftikhar, S.; Subia, G.S. Theoretical study of an unsteady ciliary hemodynamic fluid flow subject to the Newton’s boundary conditions. Adv. Mech. Eng. 2021, 13, 16878140211040462. [Google Scholar] [CrossRef]
- Su, M.; Mandal, M.S.; Mukhopadhyay, S. Numerical Simulation of Mass Transfer in Pulsatile Flow of Blood Characterized by Carreau Model under Stenotic Condition. J. Appl. Fluid Mech. 2021, 14, 805–817. [Google Scholar] [CrossRef]
- Sangita, R.; Ranjeeta, B.; Bég, O.; Pradeep, B.; Ben, H. Pulsatile dissipative magne-to-bio-rheological fluid flow and heat transfer in a non-Darcy porous medium channel: Finite element modeling. Emir. J. Eng. Res. 2009, 14, 77–90. [Google Scholar]
- Coppolo, D.P.; Schloss, J.; Suggett, J.A.; Mitchell, J.P. Non-Pharmaceutical Techniques for Obstructive Airway Clearance Focusing on the Role of Oscillating Positive Expiratory Pressure (OPEP): A Narrative Review. Pulm. Ther. 2022, 8, 1–41. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384. [Google Scholar] [CrossRef]
- Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.-W. Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies. Chem. Res. Toxicol. 2021, 34, 1984–2002. [Google Scholar] [CrossRef]
- Thiyagarajan, P.; Sathiamoorthy, S.; Santra, S.S.; Ali, R.; Govindan, V.; Noeiaghdam, S.; Nieto, J.J. Free and Forced Convective Flow in Pleural Fluid with Effect of Injection between Different Permeable Regions. Coatings 2021, 11, 1313. [Google Scholar] [CrossRef]
- Hetnarski, R. On inverting the Laplace transforms connected with the error function. Appl. Math. 1964, 7, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.U.; Shatanawi, W.; Malik, M. Heat transfer and double sampling of stratification phenomena in non-Newtonian liquid suspension: A comparative thermal analysis. Case Stud. Therm. Eng. 2022, 33, 101934. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Hussain, Z.; Alotaibi, N.; Muhammad, T. Estimation method of mixture distribution and modeling of COVID-19 pandemic. AIMS Math. 2022, 7, 9926–9956. [Google Scholar] [CrossRef]
- Shafiq, A.; Sindhu, T.N.; Alotaibi, N. A novel extended model with versatile shaped failure rate: Statistical inference with COVID -19 applications. Results Phys. 2022, 36, 105398. [Google Scholar] [CrossRef] [PubMed]
- Enault, S.; Lombardi, D.; Poncet, P.; Thiriet, M. Mucus dynamics subject to air and wall motion. ESAIM Proc. EDP Sci. 2010, 30, 125–141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiyagarajan, P.; Sathiyamoorthy, S.; Loganathan, K.; Makinde, O.D.; Sarris, I.E. Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field. Inventions 2022, 7, 50. https://doi.org/10.3390/inventions7030050
Thiyagarajan P, Sathiyamoorthy S, Loganathan K, Makinde OD, Sarris IE. Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field. Inventions. 2022; 7(3):50. https://doi.org/10.3390/inventions7030050
Chicago/Turabian StyleThiyagarajan, Padmavathi, Senthamilselvi Sathiyamoorthy, Karuppusamy Loganathan, Oluwole Daniel Makinde, and Ioannis E. Sarris. 2022. "Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field" Inventions 7, no. 3: 50. https://doi.org/10.3390/inventions7030050
APA StyleThiyagarajan, P., Sathiyamoorthy, S., Loganathan, K., Makinde, O. D., & Sarris, I. E. (2022). Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field. Inventions, 7(3), 50. https://doi.org/10.3390/inventions7030050