Using Drones for Thermal Imaging Photography and Building 3D Images to Analyze the Defects of Solar Modules
Abstract
:1. Introduction
2. Detection Method and Experimental Setup
2.1. Visual Inspection
2.2. Electroluminescence (EL)
2.3. Thermal Imaging Inspection (IR)
2.4. Comparison of Detection Methods
2.5. Typical Filtering Techniques Introduction
2.5.1. Median Filtering
2.5.2. Mean Filtering
2.6. Experimental Setup and Innovative Methods
2.6.1. Experimental Setup
2.6.2. Innovative Methods
3. Results
3.1. Irradiance at 700 W/m2
3.2. Irradiance at 500 W/m2
3.3. Irradiance at 850 W/m2
3.4. The Practical Verification Experiment
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNDP. THE SDGS IN ACTION. Sustainable Development Goals (SDGs). 2021. Available online: https://www.un.org/en/desa/sustainable-development-goals-sdgs (accessed on 6 July 2021).
- TechNews. The Key to High-Efficiency and Longevity of Solar Field, the Issue of Module Mismatch Cannot Be Ignored. 2021. Available online: https://6park.news/en/the-key-to-high-efficiency-and-longevity-of-solar-field-module-mismatch-issues-cannot-be-ignored-technews-technology-news.html (accessed on 22 March 2021).
- Liao, K.-C.; Lu, J.H. Using UAV to Detect Solar Module Fault Conditions of a Solar Power Farm with IR and Visual Image Analysis. Appl. Sci. 2021, 11, 1835. [Google Scholar] [CrossRef]
- Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B.; Alsafasfeh, Q.; Su, W. Unsupervised fault detection and analysis for large photovoltaic systems using drones and machine vision. Energies 2018, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.; Ibanez, M. Modelling power output in photovoltaic modules for outdoor operating conditions. Energy Convers. Manag. 2006, 47, 2424–2430. [Google Scholar] [CrossRef]
- Hwang, M.-H.; Kim, Y.-G.; Lee, H.-S.; Kim, Y.-D.; Cha, H.-R. A study on the improvement of efficiency by detection solar module faults in deteriorated photovoltaic power plants. Appl. Sci. 2021, 11, 727. [Google Scholar] [CrossRef]
- Yahyaoui, I.; Segatto, M.E. A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid. Energy Convers. Manag. 2017, 132, 198–206. [Google Scholar] [CrossRef]
- Liao, K.; Lu, J. Using Matlab real-time image analysis for solar panel fault detection with UAV. J. Phys. Conf. Ser. 2020, 1509, 012010. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S. Monitoring system for photovoltaic plants: A review. Renew. Sustain. Energy Rev. 2017, 67, 1180–1207. [Google Scholar] [CrossRef]
- Jeong, H.; Kwon, G.-R.; Lee, S.-W. Deterioration diagnosis of solar module using thermal and visible image processing. Energies 2020, 13, 2856. [Google Scholar] [CrossRef]
- Navid, Q.; Hassan, A.; Fardoun, A.A.; Ramzan, R. An Online Novel Two-Layered Photovoltaic Fault Monitoring Technique Based Upon The Hybrid Parameters. In Proceedings of the 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 18–21 June 2019; pp. 1–5. [Google Scholar]
- Henry, C.; Poudel, S.; Lee, S.-W.; Jeong, H. Automatic detection system of deteriorated PV modules using drone with thermal camera. Appl. Sci. 2020, 10, 3802. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M.; Felicetti, A.; Piccinini, F.; Zingaretti, P. Automatic Faults Detection of Photovoltaic Farms: SolAIr, a Deep Learning-Based System for Thermal Images. Energies 2020, 13, 6496. [Google Scholar] [CrossRef]
- Boulhidja, S.; Mellit, A.; Voswinckel, S.; Lughi, V.; Ciocia, A.; Spertino, F.; Massi Pavan, A. Experimental evidence of PID effect on CIGS photovoltaic modules. Energies 2020, 13, 537. [Google Scholar] [CrossRef] [Green Version]
- Tsanakas, J.A.; Vannier, G.; Plissonnier, A.; Ha, D.L.; Barruel, F. Fault diagnosis and classification of large-scale photovoltaic plants through aerial orthophoto thermal mapping. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 1783–1788. [Google Scholar]
- Gallardo-Saavedra, S.; Hernández-Callejo, L.; Alonso-García, M.d.C.; Muñoz-Cruzado-Alba, J.; Ballestín-Fuertes, J. Infrared thermography for the detection and characterization of photovoltaic defects: Comparison between illumination and dark conditions. Sensors 2020, 20, 4395. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, Á.H.; Marugán, A.P.; Márquez, F.P.G. Optimal productivity in solar power plants based on machine learning and engineering management. In Proceedings of the International Conference on Management Science and Engineering Management, Melbourne, Australia, 1–4 August 2018; pp. 983–994. [Google Scholar]
- Ballestín-Fuertes, J.; Muñoz-Cruzado-Alba, J.; Sanz-Osorio, J.F.; Hernández-Callejo, L.; Alonso-Gómez, V.; Morales-Aragones, J.I.; Gallardo-Saavedra, S.; Martínez-Sacristan, O.; Moretón-Fernández, Á. Novel utility-scale photovoltaic plant electroluminescence maintenance technique by means of bidirectional power inverter controller. Appl. Sci. 2020, 10, 3084. [Google Scholar] [CrossRef]
- Sciuto, G.L.; Napoli, C.; Capizzi, G.; Shikler, R. Organic solar cells defects detection by means of an elliptical basis neural network and a new feature extraction technique. Optik 2019, 194, 163038. [Google Scholar] [CrossRef]
- Lo Sciuto, G.; Capizzi, G.; Shikler, R.; Napoli, C. Organic solar cells defects classification by using a new feature extraction algorithm and an EBNN with an innovative pruning algorithm. Int. J. Intell. Syst. 2021, 36, 2443–2464. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, T. Stacking Model for Photovoltaic-Power-Generation Prediction. Sustainability 2022, 14, 5669. [Google Scholar] [CrossRef]
- López Gómez, J.; Ogando Martínez, A.; Troncoso Pastoriza, F.; Febrero Garrido, L.; Granada Álvarez, E.; Orosa García, J.A. Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data. Sustainability 2020, 12, 10295. [Google Scholar] [CrossRef]
- Ponce-Jara, M.A.; Velásquez-Figueroa, C.; Reyes-Mero, M.; Rus-Casas, C. Performance Comparison between Fixed and Dual-Axis Sun-Tracking Photovoltaic Panels with an IoT Monitoring System in the Coastal Region of Ecuador. Sustainability 2022, 14, 1696. [Google Scholar] [CrossRef]
- Dolara, A.; Leva, S.; Manzolini, G.; Ogliari, E. Investigation on performance decay on photovoltaic modules: Snail trails and cell microcracks. IEEE J. Photovolt. 2014, 4, 1204–1211. [Google Scholar] [CrossRef]
- Roy, J.; Gariki, G.R.; Nagalakhsmi, V. Reference module selection criteria for accurate testing of photovoltaic (PV) panels. Sol. Energy 2010, 84, 32–36. [Google Scholar] [CrossRef]
- Aghaei, M.; Bellezza Quater, P.; Grimaccia, F.; Leva, S.; Mussetta, M. Unmanned aerial vehicles in photovoltaic systems monitoring applications. In Proceedings of the European Photovoltaic Solar Energy 29th Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 2734–2739. [Google Scholar]
- Breitenstein, O.; Rakotoniaina, J.; Rifai, M.A. Quantitative evaluation of shunts in solar cells by lock-in thermography. Prog. Photovolt. Res. Appl. 2003, 11, 515–526. [Google Scholar] [CrossRef]
- China Aviation Development Foundation. Promote Drone Management, Taking into Account Safety and Development. 2021. Available online: https://www.cadf.org.tw/latest-news-tvi/56 (accessed on 30 November 2011).
- Lee, J.-S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easton, R.L. Fundamentals of Digital Image Processing. November 2010. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470689776 (accessed on 22 December 2010).
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef] [Green Version]
- Kupidura, P. Comparison of filters dedicated to speckle suppression in sar images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41. [Google Scholar] [CrossRef]
- Lee, J.-S.; Grunes, M.R.; Schuler, D.L.; Pottier, E.; Ferro-Famil, L. Scattering-model-based speckle filtering of polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2005, 44, 176–187. [Google Scholar]
- Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast adaptive nonlocal SAR despeckling. IEEE Geosci. Remote Sens. Lett. 2013, 11, 524–528. [Google Scholar] [CrossRef]
- Solbo, S.; Eltoft, T. A stationary wavelet-domain wiener filter for correlated speckle. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1219–1230. [Google Scholar] [CrossRef]
- Lee, J.-S.; Wen, J.-H.; Ainsworth, T.L.; Chen, K.-S.; Chen, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 2008, 47, 202–213. [Google Scholar]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 50, 606–616. [Google Scholar] [CrossRef]
- McDonnell, M. Box-filtering techniques. Comput. Graph. Image Process. 1981, 17, 65–70. [Google Scholar] [CrossRef]
References | Method | |
---|---|---|
Drones + IR Image Defect Detection | Post-Detection Analysis | |
Alsafasfeh, M., et al. [4] | Yes | |
Jeong, H., et al. [10] | Yes | Diagnosis |
Navid, Q., et al. [11] | Yes | |
Henry, C., et al. [12] | Yes | |
Pierdicca, R., et al. [13] | Yes | Deep learning |
Boulhidja, S., et al. [14] | Yes | |
Tsanakas, J.A., et al. [15] | Yes | |
Gallardo-Saavedra, S., et al. [16] | Yes | |
Herraiz, Á.H., et al. [17] | Yes | |
Ballestín-Fuertes, J., et al. [18] | EL 1 | |
Zhang, H., et al. [21] | Stacking model | |
López Gómez, J., et al. [22] | Artificial neural networks | |
Ponce-Jara, M.A., et al. [23] | IoT monitoring system |
No. | Authors | Reference | Key Point |
---|---|---|---|
1 | Jeong, H., et al. | [10] | Using the maximally stable extremal regions (MSER) method, which proposes an effective matching method for feature points and a homography translation technique. The derivation method and the normal/abnormal decision method are described. |
2 | Pierdicca, R., et al. | [13] | Intersection over union (IoU) is trained and evaluated on the photovoltaic thermal image dataset—a publicly available dataset collected for this work. |
3 | Ballestín-Fuertes, J., et al. | [18] | Demonstrates the technical feasibility of onsite EL inspection of photovoltaic power plants without measuring and analyzing panel defects of photovoltaic installations. |
4 | Zhang, H., et al. | [21] | Using two PV datasets for gradient boosting, random forests, light gradient boosting, and gradient boosting decision trees to predict photovoltaic power generation. |
5 | López Gómez, J., et al. | [22] | Feeds GDAS weather data into an ANN model; the tested numerical weather model can be combined with machine learning tools to model the output of PV systems. |
6 | Ponce-Jara, M.A., et al. | [23] | PV modules are connected to an IoT monitoring system with dual-axis tracking. |
Detection Method | Inspection Purpose and Requirements | ||||
---|---|---|---|---|---|
Cell Surface Inspection | Cell Internal Inspection | Fast Save Time | Safety | Outdoor | |
Visual inspection | Yes | Yes | |||
EL 1 | Yes | Yes | |||
IR image 2 | Yes | Yes | Yes | Yes | |
Drone + IR image | Yes | Yes | Yes | Yes | Yes |
No. | LEPTON 3.5 | Specification |
---|---|---|
1 | Effective frame rate | 8.7 Hz |
2 | Output format | 14-bit, 8-bit, 24-bit RGB |
3 | Pixel size | 12 µm |
4 | Scene dynamic range | Low-gain mode: −10 to 400 °C; High-gain mode: −10 to 140 °C |
5 | Spectral range | 8 µm to 14 µm |
6 | Thermal sensitivity | <50 mK (0.050 °C) |
7 | Visual angle | 57 |
8 | Resolution | 160 × 120 |
Irradiance W/m2 | Filter and Methods | |||
---|---|---|---|---|
Mean Filter | Median Filter | Improve Box Filter | Improve Box Filter and 3D Image | |
700 W/m2 | O | O | O | V |
500 W/m2 | X | O | O | V |
850 W/m2 | O | O | O | V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, K.-C.; Wu, H.-Y.; Wen, H.-T. Using Drones for Thermal Imaging Photography and Building 3D Images to Analyze the Defects of Solar Modules. Inventions 2022, 7, 67. https://doi.org/10.3390/inventions7030067
Liao K-C, Wu H-Y, Wen H-T. Using Drones for Thermal Imaging Photography and Building 3D Images to Analyze the Defects of Solar Modules. Inventions. 2022; 7(3):67. https://doi.org/10.3390/inventions7030067
Chicago/Turabian StyleLiao, Kuo-Chien, Hom-Yu Wu, and Hung-Ta Wen. 2022. "Using Drones for Thermal Imaging Photography and Building 3D Images to Analyze the Defects of Solar Modules" Inventions 7, no. 3: 67. https://doi.org/10.3390/inventions7030067
APA StyleLiao, K. -C., Wu, H. -Y., & Wen, H. -T. (2022). Using Drones for Thermal Imaging Photography and Building 3D Images to Analyze the Defects of Solar Modules. Inventions, 7(3), 67. https://doi.org/10.3390/inventions7030067