A Platform for Inpatient Safety Management Based on IoT Technology
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Process Characterization
3.2. Platform Development
- “Sprint Planning”, which consists of a meeting with the entire Scrum team in which the “Backlog” is inspected to define the items to be delivered in each “Sprint”, and to verify the status of the activities assigned and which are recorded in the project management tool Jira.
- “Daily Scrum”, which consists of a 15-min daily meeting. In this case, it was held at the end of the day. The software development team members briefly explained the current progress and difficulties in this meeting.
- “Sprint Review”. A presentation showing the finalized functionalities and, therefore, the increment achieved in each “Sprint” was given every 15 days.
- There was a team of backend, frontend, and database software engineers. In addition, there was a “Scrum Master” in charge of guiding the implementation of the Scrum methodology and ensuring that the meetings took place. The “Product Owner” was also part of the team, communicating with the client and collecting business knowledge.
3.3. Architecture Design
3.4. Component Diagram
4. Results
4.1. Development of Hardware Components
4.2. LoRa Network for Communication
4.3. Integration of Hardware and Software Components
4.3.1. Nursing Call
4.3.2. Multifunctional Button
- The device called the “multifunctional button” has four buttons: “Discharge”, “code blue”, “cancel”, and “code red” which, when pressed, send a radio frequency signal to the corridor light device and the nursing reception.
- The code blue button’s function is to alert nurses to the presence of cardiac or respiratory arrest. Nurses should activate it. The code red button alerts to the occurrence of bleeding. The discharge code button must be activated when the doctor indicates discharge, and from that moment, the time is counted until the patient is physically discharged and the bed is released. The last button corresponds to the cancel button that stops the call of the button that has been pressed.
- Additionally, a hand-held button was developed that allows the patient to call the nursing staff. This device requires a power supply of 3.3 volts, using two AA-size batteries (LR6) of 1.5 V DC. Approximate power consumption when active or in use is less than 50 microamps and less than ten milliamps in standby mode, having a battery life of about one year.
4.3.3. Bathroom Button
4.3.4. Central Gateway
4.4. Measuring Energy Consumption
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miasso, A.I.; Silva, A.E.B.D.C.; Cassiani, S.H.D.B.; Grou, C.R.; De Oliveira, R.C.; Fakih, F.T. The medication preparation and administration process: Problem identification in order to propose improvements and prevent medication errors [O processo de preparo e administração de medicamentos: Identificação de problemas para propor melhorias e prevenir erros de medicação]. Rev. Lat. Am. Enferm. 2006, 14, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, N.; Wang, Y.; Metersky, M.; Eckenrode, S.; Mathew, J.; Sonnenfeld, N.; Perdue-Puli, J.; Hunt, D.; Brady, P.J.; McGann, P.; et al. Trends in Adverse Event Rates in Hospitalized Patients, 2010–2019. JAMA 2022, 328, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Audi, M.; Ali, A.; Al-Masri, R. Determinants of Advancement in Information Communication Technologies and its Prospect under the role of Aggregate and Disaggregate Globalization. Sci. Ann. Econ. Bus. 2022, 69, 2. [Google Scholar] [CrossRef]
- Khan, M.M.; Alanazi, T.M.; Albraikan, A.A.; Almalki, F.A. IoT-Based Health Monitoring System Development and Analysis. Secur. Commun. Netw. 2022, 2022, 9639195. [Google Scholar] [CrossRef]
- Health Facilities. The Official Magazine of the American Society for the Healthcare Engineering. Available online: https://www.hfmmagazine.com/authors/769-neal-lorenzi/articles?page=2 (accessed on 8 October 2022).
- Johnson, C.D.; Tu, P.H.; Bonissone, P.P.; Lizzi, J.M., Jr.; Akbay, K.S.; Yu, T.; Bufi, C.N.; Avasarala, V.; Lyer, N.S.; Yao, Y.; et al. System and Method for Protocol Adherence. U.S. Patent 20180174682A1, 2 February 2018. Available online: https://patents.google.com/patent/US20180174682A1/ (accessed on 8 October 2022).
- Ogawa, K. Nurse Call System. U.S. Patent 20200258619A1, 27 April 2020. Available online: https://patents.google.com/patent/US20200258619A1 (accessed on 8 October 2022).
- Diana, B.; Natalia, G. Eventos adversos durante la atención de enfermería en unidades de cuidados intensivos. Specialization Thesis, Universidad Javeriana, Bogota, Colombia, 2008. [Google Scholar]
- Rivera, N.; Moreno, R.; Escobar, S. Prevalencia de errores en la utilización de medicamentos en pacientes de alto riesgo farmacológico y análisis de sus potenciales causas en una entidad hospitalaria. Enferm. Glob. 2013, 12, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, G.; Rodriguez, J.; Gallegos, M.; Cordoba, M.; Flores, M. Perception of frequency and causes o medication-related adverse events in nursing care. Rev. Conamed 2009, 14, 22–28. [Google Scholar]
- Rajba, P. Tackling Access Control Complexity by Combining XACML and Domain Driven Design. Adv. Intell. Syst. Comput. 2020, 1173, 493–502. [Google Scholar] [CrossRef]
- Rasheedh, J.A.; Saradha, S. Design and Development of Resilient Microservices Architecture for Cloud Based Applications using Hybrid Design Patterns. Indian J. Comput. Sci. Eng. 2022, 13, 365–378. [Google Scholar] [CrossRef]
- Trumbach, C.C.; Walsh, K.R.; Mahesh, S. A Historical and Bibliometric Analysis of the Development of Agile. In Research Anthology on Agile Software, Software Development, and Testing; Engg Journals Publications: Vandalur, Indian, 2021; pp. 107–121. [Google Scholar] [CrossRef]
- Calefato, F.; Giove, A.; Lanubile, F.; Losavio, M. A case study on tool support for collaboration in agile development. In Proceedings of the 2020 ACM/IEEE 15th International Conference on Global Software Engineering, Seoul, Republic of Korea, 26–28 June 2020; pp. 11–21. [Google Scholar] [CrossRef]
- Ota, M. Scrum in Research. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Association for Computing Machinery: New York, NY, USA, 2010; pp. 109–116. [Google Scholar] [CrossRef]
- Floruț, C.; Buchmann, R.A. Modeling Tool for Managing Requirements and Backlogs in Agile Software Development. CEUR Workshop Proc. 2022, 312. Available online: https://ceur-ws.org/Vol-3122/PT-paper-5.pdf (accessed on 5 December 2022).
- Abutaleb, H.; Tamimi, A.; Alrawashdeh, T. Empirical Study of Most Popular PHP Framework. In Proceedings of the 2021 International Conference on Information Technology, Amman, Jordan, 14–15 July 2021; pp. 608–611. [Google Scholar] [CrossRef]
- Novac, O.C.; Madar, D.E.; Novac, C.M.; Bujdoso, G.; Oproescu, M.; Gal, T. Comparative study of some applications made in the Angular and Vue.js frameworks. In Proceedings of the 2021 16th International Conference on Engineering of Modern Electric Systems, Oradea, Romania, 10–11 June 2021. [Google Scholar] [CrossRef]
- Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A Publish/Subscribe Protocol for Wireless Sensor Networks. In Proceedings of the 3rd IEEE/Create-Net International Conference on Communication System Software and Middleware, Bangalore, India, 6–10 January 2008; pp. 791–798. [Google Scholar] [CrossRef]
- Kononenko, O.; Baysal, O.; Holmes, R.; Godfrey, M.W. Mining modern repositories with Elasticsearch. In Proceedings of the 11th Working Conference on Mining Software Repositories, Hyderabad, India, 31 May 2014; pp. 328–331. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Kim, J.-S.; Cho, W.-S.; Soeng, S.; Kong, S.; Lee, K.-H. Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. In Proceedings of the 3rd International Conference on Artificial Intelligence in Information and Communication, Jeju Island, Republic of Korea, 13–16 April 2021; pp. 480–482. [Google Scholar] [CrossRef]
- Ferreira, F.; Borges, H.S.; Valente, M.T. On the (un-)adoption of JavaScript front-end frameworks. Softw. Pract. Exp. 2022, 52, 947–966. [Google Scholar] [CrossRef]
- Blackwell, G.R. Circuit boards. In The Electronic Packaging Handbook; CRC Press: Boca Raton, FL, USA, 2017; 89p. [Google Scholar] [CrossRef]
- Atif, M.; Muralidharan, S.; Ko, H.; Yoo, B. Wi-ESP-A tool for CSI-based Device-Free Wi-Fi Sensing (DFWS). J. Comput. Des. Eng. 2020, 7, 644–656. [Google Scholar] [CrossRef]
- Aborujilah, A.; Adamu, J.; Shariff, S.M.; Awang Long, Z. Descriptive Analysis of Built-in Security Features in Web Development Frameworks. In Proceedings of the 2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 3–5 January 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Kumbhar, A. Overview of ISM Bands and Software-Defined Radio Experimentation. Wirel. Pers. Commun. 2017, 97, 3743–3756. [Google Scholar] [CrossRef]
- Bobkov, I.; Rolich, A.; Denisova, M.; Voskov, L. Study of LoRa Performance at 433 MHz and 868 MHz Bands Inside a Multistory Building. In Proceedings of the 2020 Moscow Workshop on Electronic and Networking Technologies, Moscow, Russia, 11–13 March 2020. [Google Scholar] [CrossRef]
- Adi, P.D.P.; Kitagawa, A. A performance of radio frequency and signal strength of LoRa with BME280 sensor. Telkomnika 2020, 18, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Piñeres-Espitia, G.; Cama-Pinto, A.; De La Rosa Morrón, D.; Estevez, F.; Cama-Pinto, D. Design of a low cost weather station for detecting environmental changes. Espacios 2017, 38, 13. [Google Scholar]
- Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Gómez-Mula, F.; Lao, J.A.M.; Cama-Pinto, A. Empirical model of radio wave propagation in the presence of vegetation inside greenhouses using regularized regressions. Sensors 2020, 20, 6621. [Google Scholar] [CrossRef] [PubMed]
- Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Gómez-Mula, F.; Cama-Pinto, A. Radiowave attenuation measurement system based on rssi for precision agriculture: Application to tomato greenhouses. Inventions 2021, 6, 66. [Google Scholar] [CrossRef]
- Cama-Pinto, A.; Piñeres-Espitia, G.; Comas-González, Z.; Vélez-Zapata, J.; Gómez-Mula, F. Design of a monitoring network of meteorological variables related to tornadoes in Barranquilla-Colombia and its metropolitan area. Ingeniare 2017, 25, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. [Google Scholar] [CrossRef] [PubMed]
- Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderin-Curtidor, A.C.; Martínez-Lao, J.; Cama-Pinto, A. 5g mobile phone network introduction in Colombia. Electronics 2021, 10, 922. [Google Scholar] [CrossRef]
- Barrios-Ulloa, A.; Cama-Pinto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of iot applications in Colombia using 5g wireless networks. Sensors 2021, 21, 7167. [Google Scholar] [CrossRef] [PubMed]
Test | Power Mode ESP32 | LoRa | Power Consumption |
---|---|---|---|
Test 1 | deep sleep | active | 4.32 mA |
active | sending | 69.2 mA | |
active | receiving | 53.1 mA | |
active | standby | 43.9 mA | |
Test 2 | active | active | 65.9 mA |
active | sending | 71.1 mA | |
active | receiving | 54.4 mA | |
active | standby | 44.3 mA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrieta Rodriguez, E.; Murillo Fernandez, L.F.; Castañez Orta, G.A.; Rivas Horta, A.M.; Baldovino Barco, C.; Jimenez Barrionuevo, K.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A. A Platform for Inpatient Safety Management Based on IoT Technology. Inventions 2022, 7, 116. https://doi.org/10.3390/inventions7040116
Arrieta Rodriguez E, Murillo Fernandez LF, Castañez Orta GA, Rivas Horta AM, Baldovino Barco C, Jimenez Barrionuevo K, Cama-Pinto D, Arrabal-Campos FM, Martínez-Lao JA, Cama-Pinto A. A Platform for Inpatient Safety Management Based on IoT Technology. Inventions. 2022; 7(4):116. https://doi.org/10.3390/inventions7040116
Chicago/Turabian StyleArrieta Rodriguez, Eugenia, Luis Fernando Murillo Fernandez, Gustavo Adolfo Castañez Orta, Ana Milena Rivas Horta, Carlos Baldovino Barco, Kellys Jimenez Barrionuevo, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos, Juan Antonio Martínez-Lao, and Alejandro Cama-Pinto. 2022. "A Platform for Inpatient Safety Management Based on IoT Technology" Inventions 7, no. 4: 116. https://doi.org/10.3390/inventions7040116
APA StyleArrieta Rodriguez, E., Murillo Fernandez, L. F., Castañez Orta, G. A., Rivas Horta, A. M., Baldovino Barco, C., Jimenez Barrionuevo, K., Cama-Pinto, D., Arrabal-Campos, F. M., Martínez-Lao, J. A., & Cama-Pinto, A. (2022). A Platform for Inpatient Safety Management Based on IoT Technology. Inventions, 7(4), 116. https://doi.org/10.3390/inventions7040116