Asymmetric Method of Heat Transfer Intensification in Radial Channels of Gas Turbine Blades
Abstract
:1. Introduction
- Channel shape (aspect ratio, hydraulic diameter);
- Rib geometry: height, pitch, maximum contact angle, rib alignment, cross-sectional shape of the rib.
2. Materials and Methods
2.1. Research Object
2.2. Numerical Simulation Method
- Constant section-averaged static pressure of 1 Bar was established at the model outlet;
- Mass flow rate of 0.00390743 kg/s and a temperature of 20 °C were established at the inlet;
- Temperature of the channel external wall Tw was assumed equal to 419 °C, which corresponds to the zinc crystallization temperature on the model external surface. This corresponds to the tests to be carried out on the test rig with the use of a liquid metal thermostat.
2.3. Experimental Method
3. Results and Discussion
4. Conclusions
- The paper discloses the development of the method for asymmetric heat transfer intensification in the radial cooling channels of high-temperature gas turbine blades. The method allows for a reduction in temperature non-uniformity in the mid-chord airfoil part of the blades with loop or semi-loop cooling systems;
- In the Reynolds criteria range of 6000–20,000, the asymmetric heat transfer intensification provides a heat flux difference from 15 to 40% on the opposite channel sides;
- The heat transfer difference on the opposite channel side of 40% and the thermo-hydraulic efficiency reach their maximal values at the channel-specific area of 0.25 and the specific hole diameter in the splitter rib of 2.0;
- The criteria relations based on the test results allow for the calculation of the mean heat transfer to cooling air along the channel length.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Suleiman, A.; Samuel, O.D.; Amosun, S.T.; Emovon, I.; Ashiedu, F.I.; Fayomi, O.S.I.; Layeni, A.; Nwaokocha, C.N.; Afolalu, S.A. Gas Turbine Performance Forecast and Assessment: GE LM2500 in Outlook. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012025. [Google Scholar] [CrossRef]
- Abam, F.I.; Diemuodeke, O.E.; Ekwe, E.B.; Alghassab, M.; Samuel, O.D.; Khan, Z.A.; Imran, M.; Farooq, M. Exergoeconomic and environmental modeling of integrated polygeneration power plant with Biomass-Based syngas supplemental firing. Energies 2020, 2020, 6018. [Google Scholar] [CrossRef]
- Fajardo, J.; Guette, D.; Barreto, D.; Cardona, C.; Baldiris, I. Conventional and advanced exergetic analysis for the combined cycle of power plant with gas turbine of a refinery. IMECE 2021, 85642, V08BT08A011. [Google Scholar]
- Qian, X.; Yan, P.; Wang, X.; Han, W. Numerical Analysis of Conjugated Heat Transfer and Thermal Stress Distributions in a High-Temperature Ni-Based Superalloy Turbine Rotor Blade. Energies 2022, 15, 4972. [Google Scholar] [CrossRef]
- Laveneziana, L.; Rosafio, N.; Salvadori, S.; Misul, D.A.; Baratta, M.; Forno, L.; Valsania, M.; Toppino, M. Conjugate Heat Transfer Analysis of the Aero-Thermal Impact of Different Feeding Geometries for Internal Cooling in Lifetime Extension Processes for Heavy-Duty Gas Turbines. Energies 2022, 15, 3022. [Google Scholar] [CrossRef]
- Kindra, V.O.; Rogalev, A.N.; Osipov, S.K.; Zlyvko, O.V.; Vegera, A.N. Numerical study of flow and heat transfer in a rectangular channel with pin fin arrays and back ribs. In Proceedings of the 14th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Gdansk, Poland, 12–16 April 2021. [Google Scholar]
- Wu, W.; Yao, R.; Wang, J.; Su, H.; Wu, X. Leading edge impingement cooling analysis with separators of a real gas turbine blade. Appl. Therm. Eng. 2022, 208, 118275. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, X.; Huai, X.; Cheng, K. Numerical investigation on multi-stage swirl cooling at mid-chord region of gas turbine blades. Appl. Therm. Eng. 2022, 216, 119003. [Google Scholar] [CrossRef]
- Liang, C.; Rao, Y.; Luo, J.; Luo, X. Experimental and numerical study of turbulent flow and heat transfer in a wedge-Shaped Channel with guiding pin fins for turbine blade trailing edge cooling. Int. J. Heat Mass Transf. 2021, 178, 121590. [Google Scholar] [CrossRef]
- Dinh, C.T.; Nguyen, T.M.; Vu, T.D.; Park, S.G.; Nguyen, Q.H. Numerical investigation of truncated-root rib on heat transfer performance of internal cooling turbine blades. Phys. Fluids 2021, 33, 076104. [Google Scholar] [CrossRef]
- Sreekesh, K.; Tafti, D.K.; Vengadesan, S. The combined effect of coriolis and centrifugal buoyancy forces on internal cooling of turbine blades with modified ribs using Large Eddy Simulation (LES). Int. J. Therm. Sci. 2022, 182, 107797. [Google Scholar] [CrossRef]
- Nourin, F.N.; Amano, R.S. Review of gas turbine internal cooling improvement technology. J. Energy Resour. Technol. 2021, 143, 080801-1. [Google Scholar] [CrossRef]
- Unnikrishnan, U.; Yang, V. A review of cooling technologies for high temperature rotating components in gas turbine. Propuls. Power Res. 2022, 11, 293–310. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, Z. Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge. Int. J. Heat Mass Transf. 2011, 5423, 4949–4959. [Google Scholar] [CrossRef]
- Han, J.C.; Dutta, S.; Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology; CRC Press: Boca Raton, FL, USA, 2012; p. 871. [Google Scholar]
- Han, J.C.; Park, J.S. Developing heat transfer in rectangular channels with rib turbulators. Int. J. Heat Mass Transf. 1988, 31, 183–195. [Google Scholar] [CrossRef]
- Han, J.C.; Ou, S.; Park, J.S.; Lei, C.K. Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int. J. Heat Mass Transf. 1989, 32, 1619–1630. [Google Scholar] [CrossRef]
- Leontiev, A.I.; Olimpiev, V.V. Thermal Physics and Heating Engineering of Advanced Heat Exchange Augmentors (Review). Power Eng. 2011, 1, 7–31. [Google Scholar]
- Xu, G.; Li, Y.; Deng, H. Effect of rib spacing on heat transfer and friction in a rotating two-pass square channel with asymmetrical 90-deg rib turbulators. Appl. Therm. Eng. 2015, 80, 386–395. [Google Scholar] [CrossRef]
- Han, J.C.; Zhang, Y.M.; Lee, C.P. Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. J. Heat Transfer. 1991, 113, 590–596. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Gong, L.; Huand, Z. Numerical study and optimizing on micro square pin-rib heat sink for electronic cooling. Appl. Therm. Eng. 2016, 93, 1347–1359. [Google Scholar] [CrossRef]
- Han, J.C.; Zhang, Y.M. High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Int. J. Heat Mass Transf. 1992, 35, 513–523. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, J.; Ekkad, S.V. Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples. Int. J. Heat Mass Transf. 2017, 106, 629–647. [Google Scholar] [CrossRef]
- Afzal, A.; Islam, M.; Kaladgi, A.R.; Manokar, A.M.; Samuel, O.D.; Mujtaba, M.A.; Soudagar, M.E.M.; Fayaz, H.; Ali, H.M. Experimental investigation on the thermal performance of inserted helical tube three-fluid heat exchanger using graphene/water nanofluid. J. Therm. Anal. Calorim. 2022, 147, 5087–5100. [Google Scholar] [CrossRef]
- Setiyo, M.; Purnomo, B.C.; Waluyo, B.; Munahar, S.; Rochman, M.L.; Saleh, A.R.; Fatmaryanti, S.D.; Samuel, O.D. Cooling power characteristics of half-cycle refrigeration system in LPG fuelled vehicles by auxiliary chiller as heat exchanger. Therm. Sci. Eng. Prog. 2022, 27, 101145. [Google Scholar] [CrossRef]
Designation | Definition | Value |
---|---|---|
a | Model length | 99 mm |
b | Model width | 14 mm |
h | Model height | 9 mm, 7 mm |
c | Inlet channel height | 4 mm, 2 mm |
d | Inlet section channel width | 9 mm |
dк | Channel width in the area of intensification | 4 mm |
e | Wall thickness | 2.5 mm |
r1 | Corner radius for channel walls | 0.5 mm |
t | Rib installation step | 5 mm |
bp | Rib width | 0.5 mm |
hp | Rib height | 0.5 mm |
rp | Rib chamfer radius | 0.1 mm |
bhole | Hole size | var |
Rpinch | Radius of a quarter circle forming an aerodynamic kink | 1.5 mm |
Hpinch | The size of the throat section at the inlet and outlet to the channels in the pinch area | 4 mm, 3 mm, 2 mm, 1 mm |
Lp | Distance from the beginning of the baffle to the first/last rib | 5.5 mm |
Version | Hole Size mm | Hole Area mm2 | Throat Size mm | Throat Area mm2 |
---|---|---|---|---|
Case 1 | 0 | 0 | 4 | 16 |
Case 2 | 1 | 1 | 1 | 4 |
Case 3 | 1 | 1 | 2 | 8 |
Case 4 | 1 | 1 | 3 | 12 |
Case 5 | 0.5 | 0.5 | 1 | 4 |
Case 6 | 0.5 | 0.5 | 2 | 8 |
Case 7 | 0.5 | 0.5 | 3 | 12 |
Case 8 | 1.5 | 1.5 | 1 | 4 |
Case 9 | 1.5 | 1.5 | 2 | 8 |
Case 10 | 1.5 | 1.5 | 3 | 12 |
K = Nu/Nu0 | f/f0 | |||||||
---|---|---|---|---|---|---|---|---|
Version | Inlet Pressure (IP) | Inlet Suction (IS) | Outlet Pressure (OP) | Outlet Suction (OS) | Inlet Pressure (IP) | Inlet Suction (IS) | Outlet Pressure (OP) | Outlet Suction (OS) |
Case 1 | 1.95 | 1.95 | 1.95 | 1.95 | 7.03 | 7.96 | 8.00 | 7.84 |
Case 2 | 2.25 | 1.80 | 4.46 | 3.20 | 4.82 | 6.16 | 7.95 | 11.70 |
Case 3 | 1.93 | 1.64 | 3.37 | 2.29 | 4.73 | 5.80 | 9.53 | 9.88 |
Case 4 | 1.75 | 1.59 | 2.31 | 2.06 | 4.67 | 5.69 | 7.15 | 7.93 |
Case 5 | 2.22 | 1.94 | 3.99 | 3.09 | 4.56 | 7.14 | 8.32 | 8.32 |
Case 6 | 2.01 | 1.84 | 2.90 | 2.27 | 4.75 | 7.23 | 7.69 | 7.95 |
Case 7 | 2.19 | 2.05 | 2.57 | 2.20 | 6.22 | 8.64 | 7.62 | 8.40 |
Case 8 | 2.31 | 1.80 | 3.83 | 2.68 | 6.71 | 8.68 | 12.00 | 13.14 |
Case 9 | 2.02 | 1.65 | 3.18 | 2.24 | 5.74 | 6.98 | 9.06 | 9.83 |
Case 10 | 1.85 | 1.60 | 2.44 | 1.94 | 5.69 | 7.05 | 7.61 | 8.39 |
Version | KIP/KIS | KOP/KOS |
---|---|---|
Case 2 | 1.25 | 1.40 |
Case 3 | 1.18 | 1.47 |
Case 4 | 1.10 | 1.12 |
Case 5 | 1.15 | 1.29 |
Case 6 | 1.09 | 1.28 |
Case 7 | 1.07 | 1.17 |
Case 8 | 1.28 | 1.43 |
Case 9 | 1.22 | 1.42 |
Case 10 | 1.16 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipov, S.; Rogalev, A.; Rogalev, N.; Shevchenko, I.; Vegera, A. Asymmetric Method of Heat Transfer Intensification in Radial Channels of Gas Turbine Blades. Inventions 2022, 7, 117. https://doi.org/10.3390/inventions7040117
Osipov S, Rogalev A, Rogalev N, Shevchenko I, Vegera A. Asymmetric Method of Heat Transfer Intensification in Radial Channels of Gas Turbine Blades. Inventions. 2022; 7(4):117. https://doi.org/10.3390/inventions7040117
Chicago/Turabian StyleOsipov, Sergey, Andrey Rogalev, Nikolay Rogalev, Igor Shevchenko, and Andrey Vegera. 2022. "Asymmetric Method of Heat Transfer Intensification in Radial Channels of Gas Turbine Blades" Inventions 7, no. 4: 117. https://doi.org/10.3390/inventions7040117
APA StyleOsipov, S., Rogalev, A., Rogalev, N., Shevchenko, I., & Vegera, A. (2022). Asymmetric Method of Heat Transfer Intensification in Radial Channels of Gas Turbine Blades. Inventions, 7(4), 117. https://doi.org/10.3390/inventions7040117