Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX
Abstract
:1. Introduction
2. PCM-Based Sample and Experimental Method
3. Material Properties
4. Numerical Model
- Heat transfer within the PCM and air domain occurs through conduction and convection;
- The flow of liquid phase in the PCM is considered to be incompressible;
- Both the air and PCM flows are assumed to be laminar, which is supported by a Rayleigh number below 108, indicating a buoyancy-induced laminar flow [55];
- Viscous dissipation is neglected in the liquid phase of the PCM;
- The hysteresis of melting and solidification is accounted for by considering a ∆Thyst value in the problem formulation, considering the differences between Lm and Ls, and assuming the different heating and cooling responses of the PCM;
- The thermo-physical properties of the materials are assumed to be independent of temperature, except for the PCM-based materials, where the specific heat capacity (cp) and thermal conductivity (k) are considered to differ between the solid and liquid phases, and thermal conductivity is assumed to vary with temperature;
- The influence of PCM expansion and contraction during phase change is not considered, resulting in a constant density assumption, although this effect is implicitly considered in the temperature-dependent artificial curve for specific heat capacity;
- All materials are assumed to be homogeneous and isotropic.
4.1. Mathematical Model
4.1.1. Additional Heat Source Method
4.1.2. Momentum Source Method
4.1.3. Modeling of Material Properties
4.2. Initial and Boundary Conditions
4.3. Numerical Procedure
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | cavity aspect ratio (-) |
C | mushy region constant (-) |
cp | specific heat (J kg−1 °C−1) |
cpl,eq | equivalent specific heat at onset of the liquid state (J kg−1 °C−1) |
Em | energy stored during charging (J) |
Es | energy released during discharging (J) |
f | local PCM melted fraction (-) |
F | total PCM melted fraction (-) |
g | gravitational acceleration (m s−2) |
h | specific enthalpy (J kg−1) |
k | thermal conductivity (W m−1 °C−1) |
L | latent heat (J kg−1) |
NCV | total number of control volumes (-) |
S | heat source term (W m−3) |
Sf | Energy source—heat source term (W m−3) |
SM | momentum source (W m−3) |
t | time (s) |
tm,exp | time required for melting all the PCM domain in the charging experiment (s) |
ts,exp | time required for solidifying all the PCM domain in the discharging experiment (s) |
tm,num | time required for melting all the PCM domain in the charging simulation (s) |
ts,num | time required for solidifying all the PCM domain in the discharging simulation (s) |
T | temperature (°C) |
TC | average temperature on the right (cold) surface of the PCM-based sample (°C) |
TH | average temperature on the left (hot) surface of the PCM-based sample (°C) |
Ti | initial temperature of the numerical domain (°C) |
Tm | melting peak temperature of the PCM (°C) |
Tref | buoyancy reference temperature used in the Boussinesq approximation (°C) |
Ts | solidification peak temperature of the PCM (°C) |
TPCM | average temperature of the PCM (°C) |
T1m | temperature when PCM begins melting during charging (°C) |
T2m | temperature when PCM is completely melted during charging (°C) |
T1s | temperature when PCM is completely solid during discharging (°C) |
T2s | temperature when PCM begins solidifying during discharging (°C) |
U | vector of velocity of the fluid (m s−1) |
v | velocity magnitude (m s−1) |
V | volume (m3) |
Greek letters | |
β | Thermal expansion coefficient of the PCM (°C−1) |
δ | identity matrix or Kronecker delta function (-) |
µ | dynamic viscosity (Pa.s) |
ρ | volumetric mass density (kg m−3) |
ρref | reference volumetric mass density (kg m−3) |
τ | shear stress (Pa) |
∆Thyst | difference between Tm and Ts (°C) |
∆Tm | melting temperature range (°C) |
∆Ts | solidification temperature range (°C) |
∆T1m | difference between Tm and T1m (°C) |
∆T2m | difference between T2m and Tm (°C) |
∆T1s | difference between Ts and T1s (°C) |
∆T2s | difference between T2s and Ts (°C) |
Abbreviations | |
AHS | additional heat source method |
DSC | differential scanning calorimetry |
MDSC | modulated differential scanning calorimetry |
PCM | phase change material |
RMSE | root mean square error |
TES | thermal energy storage |
TPS | transient plane source |
VHC | volumetric heat capacity |
Subscripts | |
i | initial (t = 0) |
f | final |
l | liquid |
m | melting |
s | solid/solidification |
References
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Mehdaoui, F.; Hazami, M.; Taghouti, H.; Noro, M.; Lazzarin, R. An experimental and a numerical analysis of the dynamic behavior of PCM-27 included inside a vertical enclosure: Application in space heating purposes. Int. J. Therm. Sci. 2018, 133, 252–265. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Zalba, B.; Marı, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Ehms, J.H.N.; De Cesaro Oliveski, R.; Rocha, L.A.O.; Biserni, C.; Garai, M. Fixed grid numerical models for solidification and melting of phase change materials (PCMs). Appl. Sci. 2019, 9, 4334. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, Z.A.; Ali, H.M.; Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
- Baby, R.; Balaji, C. Thermal performance of a PCM heat sink under different heat loads: An experimental study. Int. J. Therm. Sci. 2014, 79, 240–249. [Google Scholar] [CrossRef]
- Soares, N.; Gaspar, A.R.; Santos, P.; Costa, J.J. Experimental study of the heat transfer through a vertical stack of rectangular cavities filled with phase change materials. Appl. Energy 2015, 142, 192–205. [Google Scholar] [CrossRef]
- Buonomo, B.; Di Pasqua, A.; Ercole, D.; Manca, O. Numerical study of latent heat thermal energy storage enhancement by nano-pcm in aluminum foam. Inventions 2018, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Memon, A.; Gupta, A.K.; Nirmalkar, N. Computational study on effect of enclosure shapes on melting characteristics of phase change material around a heated cylinder. Case Stud. Therm. Eng. 2022, 34, 102032. [Google Scholar] [CrossRef]
- Gupta, A.K.; Mishra, G.; Singh, S. Numerical study of MWCNT enhanced PCM melting through a heated undulated wall in the latent heat storage unit. Therm. Sci. Eng. Prog. 2022, 27, 101172. [Google Scholar] [CrossRef]
- Bell, G.E.; Wood, A.S. On the performance of the enthalpy method in the region of a singularity. Int. J. Numer. Methods Eng. 1983, 19, 1583–1592. [Google Scholar] [CrossRef]
- Lacroix, M.; Duong, T. Experimental improvements of heat transfer in a latent heat thermal energy storage unit with embedded heat sources. Energy Convers. Manag. 1998, 39, 703–716. [Google Scholar] [CrossRef]
- Velraj, R.; Seeniraj, R.V.; Hafner, B.; Faber, C.; Schwarzer, K. Heat transfer enhancement in a latent heat storage system. Sol. Energy 1999, 65, 171–180. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.R.; Salah, N.B.; Lassue, S.; Zalewski, L. A review on phase-change materials: Mathematical modeling and simulations. Renew. Sustain. Energy Rev. 2011, 15, 112–130. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhang, Y. Mathematical solutions and numerical models employed for the investigations of PCMs’ phase transformations. Renew. Sustain. Energy Rev. 2014, 33, 659–674. [Google Scholar] [CrossRef]
- Viswanath, R.; Ialuria, Y. A comparasion of different solution methodologies for melting and solidification problems in enclosures. Numer. Heat Transf. Part B 1993, 24, 77–105. [Google Scholar] [CrossRef]
- Lacroix, M. Modeling of latent heat storage systems. In Thermal Energy Storage Systems and Applications; Dinçer, I., Rosen, M.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Al-Saadi, S.N.; Zhai, Z. Modeling phase change materials embedded in building enclosure: A review. Renew. Sustain. Energy Rev. 2013, 21, 659–673. [Google Scholar] [CrossRef]
- Morgan, K. A numerical analysis of freezing and melting with convection. Comput. Methods Appl. Mech. Eng. 1981, 28, 275–284. [Google Scholar] [CrossRef]
- Gartling, D.K. Finite Element Analysis of Convective Heat Transfer Problems with Phase Change. In Computer Methods in Fluid; Morgan, K., Taylor, C., Brebbia, C.A., Eds.; Pentech Press: London, UK, 1980; pp. 257–284. [Google Scholar]
- Voller, V.R.; Cross, M.; Markatos, N.C. An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 1987, 24, 271–284. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A Fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- Voller, V.R. Fast implicit finit-difference method for the analysis of phase change problems. Numer. Heat Transf. Part B Fundam. Int. J. Comput. Methodol. 1990, 17, 155–169. [Google Scholar] [CrossRef]
- Voller, V.R.; Swaminathan, C.R. General Source-Based Method for Solidification Phase Change. Numer. Heat Transf. B 1991, 19, 175–189. [Google Scholar] [CrossRef]
- Brent, A.D.; Voller, V.R.; Reid, K.J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transf. 1988, 13, 297–318. [Google Scholar] [CrossRef]
- Prieto, M.M.; González, B. Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems. Renew. Energy 2016, 97, 331–343. [Google Scholar] [CrossRef]
- Wang, P.; Yao, H.; Lan, Z.; Peng, Z.; Huang, Y.; Ding, Y. Numerical investigation of PCM melting process in sleeve tube with internal fins. Energy Convers. Manag. 2016, 110, 428–435. [Google Scholar] [CrossRef]
- Frazzica, A.; Manzan, M.; Palomba, V.; Brancato, V.; Freni, A.; Pezzi, A.; Vaglieco, B.M. Experimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal Energy Storage for Hot Water Provision on Ships. Energies 2022, 15, 2596. [Google Scholar] [CrossRef]
- Shmueli, H.; Ziskind, G.; Letan, R. Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments. Int. J. Heat Mass Transf. 2010, 53, 4082–4091. [Google Scholar] [CrossRef]
- Tay, N.H.S.; Bruno, F.; Belusko, M. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system. Int. J. Heat Mass Transf. 2012, 55, 574–585. [Google Scholar] [CrossRef]
- Tay, N.H.S.; Belusko, M.; Liu, M.; Bruno, F. Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model. Appl. Energy 2015, 137, 738–747. [Google Scholar] [CrossRef]
- Ou, J.; Chatterjee, A.; Cockcroft, S.L.; Maijer, D.M.; Reilly, C.; Yao, L. Study of melting mechanism of a solid material in a liquid. Int. J. Heat Mass Transf. 2015, 80, 386–397. [Google Scholar] [CrossRef]
- Soares, N.; Rosa, N.; Costa, J.J.; Lopes, A.G.; Matias, T.; Simões, P.N.; Durães, L. Validation of different numerical models with benchmark experiments for modelling microencapsulated-PCM-based applications for buildings. Int. J. Therm. Sci. 2021, 159, 106565. [Google Scholar] [CrossRef]
- Voller, V.R. Implicit finite-difference solutions of the enthalpy formulation of stefan problems. IMA J. Numer. Anal. 1985, 5, 201–214. [Google Scholar] [CrossRef]
- Swaminathan, C.R.; Voller, V.R. Towards a general numerical scheme for solidification systems. Int. J. Heat Mass Transf. 1997, 40, 2859–2868. [Google Scholar] [CrossRef]
- Arnault, A.; Mathieu-Potvin, F.; Gosselin, L. Internal surfaces including phase change materials for passive optimal shift of solar heat gain. Int. J. Therm. Sci. 2010, 49, 2148–2156. [Google Scholar] [CrossRef]
- Joulin, A.; Younsi, Z.; Zalewski, L.; Rousse, D.R.; Lassue, S. A numerical study of the melting of phase change material heated from a vertical wall of a rectangular enclosure. Int. J. Comut. Fluid Dyn. 2009, 23, 553–566. [Google Scholar] [CrossRef]
- Hammou, Z.A.; Lacroix, M. A new PCM storage system for managing simultaneously solar and electric energy. Energy Build. 2006, 38, 258–265. [Google Scholar] [CrossRef]
- Darkwa, K.; O’Callaghan, P.W. Simulation of phase change drywalls in a passive solar building. Appl. Therm. Eng. 2006, 26, 853–858. [Google Scholar] [CrossRef]
- Danaila, I.; Moglan, R.; Hecht, F.; Le Masson, S. A Newton method with adaptive finite elements for solving phase-change problems with natural convection. J. Comput. Phys. 2014, 274, 826–840. [Google Scholar] [CrossRef]
- Ziaei, S.; Lorente, S.; Bejan, A. Constructal design for convection melting of a phase change body. Int. J. Heat Mass Transf. 2016, 99, 762–769. [Google Scholar] [CrossRef] [Green Version]
- Bennon, W.D.; Incropera, F.P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation. Int. J. Heat Mass Transf. 1987, 30, 2161–2170. [Google Scholar] [CrossRef]
- Asako, Y.; Faghri, M.; Charmchi, M.; Bahrami, P.A. Numerical solution for melting of unfixed rectangular phase-change material under low-gravity environment. Numer. Heat Transf. A Appl. 1994, 25, 191–208. [Google Scholar] [CrossRef]
- Dhaidan, N.S.; Khodadadi, J.M.; Al-Hattab, T.A.; Al-Mashat, S.M. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux. Int. J. Heat Mass Transf. 2013, 66, 672–683. [Google Scholar] [CrossRef]
- Soares, N.; Gaspar, A.R.; Santos, P.; Costa, J.J. Experimental evaluation of the heat transfer through small PCM-based thermal energy storage units for building applications. Energy Build. 2016, 116, 18–34. [Google Scholar] [CrossRef]
- Soares, N. Thermal Energy Storage with Phase Change Materials (PCMs) for the Improvement of the Energy Performance of Buildings. Ph.D. Thesis, Department of Mechanical Engineering of the Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Fragnito, A.; Bianco, N.; Iasiello, M.; Mauro, G.M.; Mongibello, L. Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage. J. Energy Storage 2022, 56, 105975. [Google Scholar] [CrossRef]
- Arumuru, V.; Rajput, K.; Nandan, R.; Rath, P.; Das, M. A novel synthetic jet based heat sink with PCM filled cylindrical fins for efficient electronic cooling. J. Energy Storage 2023, 58, 106376. [Google Scholar] [CrossRef]
- Bianco, N.; Caliano, M.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L. Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage. Energy 2023, 266, 126479. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.; Lassue, S.; Zalewski, L.; Joulin, A.; Virgone, J.; Kuznik, F.; Johannes, K.; Dumas, J.-P.; Bédécarrats, J.-P.; et al. Modeling phase change materials behavior in building applications: Comments on material characterization and model validation. Renew. Energy 2014, 61, 132–135. [Google Scholar] [CrossRef] [Green Version]
- RubiTherm GmbH. Technical Data Sheet of RT28HC, Tech. Data Sheet. 2018. Available online: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT28HC_EN_09102020.PDF (accessed on 3 March 2021).
- Çengal, Y.A. Heat and Mass Transfer: A Practical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Vogel, J.; Thess, A. Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage. Appl. Therm. Eng. 2019, 148, 147–159. [Google Scholar] [CrossRef]
- Barakos, G.; Mitsoulis, E.; Assimacopoulos, D. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 1994, 18, 695–719. [Google Scholar] [CrossRef]
- Heim, D. Isothermal storage of solar energy in building construction. Renew. Energy 2010, 35, 788–796. [Google Scholar] [CrossRef]
- Andreozzi, A.; Iasiello, M.; Tucci, C. Numerical investigation of a phase change material including natural convection effects. Energies 2021, 14, 348. [Google Scholar] [CrossRef]
- Samara, F.; Groulx, D.; Biwole, P.H. Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods. In Proceedings of the COMSOL Conference 2012, Boston, MA, USA, 10 October 2012. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Carman, P.C. Fluid flow through granular beds. Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B 1997, 75, S32–S48. [Google Scholar] [CrossRef]
- Ye, W.B. Thermal and hydraulic performance of natural convection in a rectangular storage cavity. Appl. Therm. Eng. 2016, 93, 1114–1123. [Google Scholar] [CrossRef]
- Ye, W.B.; Zhu, D.S.; Wang, N. Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions. Appl. Therm. Eng. 2012, 42, 49–57. [Google Scholar] [CrossRef]
- Shatikian, V.; Ziskind, G.; Letan, R. Numerical investigation of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transf. 2005, 48, 3689–3706. [Google Scholar] [CrossRef]
- Pal, D.; Joshi, Y.K. Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int. J. Heat Mass Transf. 2001, 44, 375–387. [Google Scholar] [CrossRef]
- Fadl, M.; Eames, P.C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Appl. Therm. Eng. 2019, 151, 90–99. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. Sensitivity of numerical predictions to the permeability coefficient in simulations of melting and solidification using the enthalpy-porosity method. Energies 2019, 12, 4360. [Google Scholar] [CrossRef] [Green Version]
Macroencapsulated RT28HC PCM | ||
---|---|---|
Measured Values [8] | Data from Manufacturer [52] | |
Melting peak temperature, Tm [°C] | 27.55 ± 0.19 | 28 |
Solidification peak temperature, Ts [°C] | 25.71 ± 0.10 | 27 |
Heat storage capacity [kJ/kg] | 250 ± 7.5% [21–36 °C] | |
Latent heat [kJ/kg] | ||
Melting, Lm | 258.1 ± 5.1 [20–30 °C] | 250 |
Solidification, Ls | 251.9 ± 6.7 [20–27 °C] | 250 |
Specific heat [J/kg⸳°C] | ||
Solid, cp,s | 1652 ± 105 [0–20 °C] | 2000 |
Liquid, cp,l | 2021 ± 120 [35–45 °C] | 2000 |
Thermal conductivity [W/(m⸳°C)] | ||
Solid, ks | ≈0.34 ± 0.00 | 0.2 |
Liquid, kl | ≈0.19 ± 0.00 | 0.2 |
Volumetric mass density, ρ [kg/m3] | ||
Solid, ρs | - | 880 |
Liquid, ρl | - | 770 |
Thermal expansion, β [K−1] | - | 0.001 |
Dynamic viscosity, µ [Pa.s] | - | 3.1 × 10−3 |
Aluminium [53] | Air at 25 °C | |
---|---|---|
Density, ρ [kg/m3] | 2707 | 1.185 |
Specific heat, cp [J/(kg⸳°C)] | 896 | 1004.4 |
Thermal conductivity, k [W/(m⸳°C)] | 204 | 0.0261 |
Dynamic viscosity, µ [Pa⸳s] | - | 1.83 × 10−5 |
Thermal expansion, β [K−1] | - | 0.003356 |
Charging | Discharging | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Em,1 (kJ) | Em,2 (kJ) | Point | tm,numerical (s) | tm,experimental (s) | RMSE (%) | Es,1 (kJ) | Es,2 (kJ) | Point | ts,numerical (s) | ts,experimental (s) | RMSE (%) |
702.9 | 702.9 | T1 | 4336 | 4380 | 2.5 | 625.8 | 625.8 | T1 | 29,304 | 14,040 | 5.3 |
T2 | 6316 | 5820 | 2.7 | T2 | 29,264 | 21,270 | 3.9 | ||||
T3 | 7528 | 7230 | 2.3 | T3 | 29,246 | 23,700 | 3.5 | ||||
T4 | 8516 | 8550 | 3.6 | T4 | 29,236 | 26,430 | 3.1 | ||||
T5 | 9500 | 10,350 | 9.8 | T5 | 29,238 | 26,460 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, N.; Soares, N.; Costa, J.; Lopes, A.G. Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX. Inventions 2023, 8, 93. https://doi.org/10.3390/inventions8040093
Rosa N, Soares N, Costa J, Lopes AG. Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX. Inventions. 2023; 8(4):93. https://doi.org/10.3390/inventions8040093
Chicago/Turabian StyleRosa, Nuno, Nelson Soares, José Costa, and António Gameiro Lopes. 2023. "Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX" Inventions 8, no. 4: 93. https://doi.org/10.3390/inventions8040093
APA StyleRosa, N., Soares, N., Costa, J., & Lopes, A. G. (2023). Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX. Inventions, 8(4), 93. https://doi.org/10.3390/inventions8040093