Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter
Abstract
:1. Introduction
- Minimization of the symmetry error;
- Wide range of voltage levels with high accuracy;
- Optimization of energy transit;
- Continuity of service.
2. Converter Configuration
2.1. Main Circuit
2.2. Continuous Conduction Mode (CCM) Operation and Analysis
2.3. Discontinuous Conduction Mode (DCM) Operation and Analysis
2.4. Input and Output Currents Relationship
3. Design Considerations
3.1. Inductors Selection
3.2. Capacitors Selection
4. Efficiency Analysis of the Proposed Converter and Comparison
4.1. Efficiency Analysis of the Proposed Converter Considering Nonideality under CCM
4.2. Comparison with Recent Similar Converters
5. Results and Discussion
5.1. Simulation Tests
5.2. Experimental Tests
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macovski, A. Medical Imaging Systems; Prentice Hall: Hoboken, NJ, USA, 1983. [Google Scholar]
- Shung, K.K. Diagnostic Ultrasound Imaging and Blood Flow Measurements, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Fontoura, B.D.; Epple, N.; Niederleithinger, E. A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring. Inventions 2021, 6, 36. [Google Scholar] [CrossRef]
- Daniels, J.M.; Hoppmann, R.A. Practical Point-of-Care Medical Ultrasound; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Choi, H.; Choe, S. Therapeutic Effect Enhancement by Dual-Bias High-Voltage Circuit of Transmit Amplifier for Immersion Ultrasound Transducer Applications. Sensors 2018, 18, 4210. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.; Perlas, A. Basics of Ultrasound Imaging. In Atlas of Ultrasound-Guided Procedures in Interventional Pain Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 13–19. [Google Scholar]
- Grangé, G. Guide pratique de l’échographie obstétricale et gynécologique. Rev. Med. Perinat. 2013, 5, 69–70. [Google Scholar] [CrossRef]
- I. Maxim Integrated Products. MAX14808/MAX14809 Octal Three- 21 Level/Quad Five-Level High-Voltage 2A Digital Pulsers with T/R Switch. Technical Report March 2013. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/MAX14808-MAX14809.pdf (accessed on 28 June 2023).
- Xu, X.; Wala, S.A.; Vishwa, A.; Shen, J.; Dijeesh, K.; Devi, S.; Chandak, A.; Dixit, S.; Granata, E.; Pithadia, S.; et al. A Programmable Platform for Accelerating the Development of Smart Ultrasound Transducer Probe. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Hager, P.A.; Benini, L. LightProbe: A Digital Ultrasound Probe for Software-Defined Ultrafast Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 747–760. [Google Scholar] [CrossRef]
- Ahn, S.; Kang, J.; Kim, P.; Lee, G.; Jeong, E.; Jung, W.; Park, M.; Song, T. Smartphone-Based Portable Ultrasound Imaging System: Prototype Implementation and Evaluation. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Texas Instrument. 6-W Dual-Output SEPIC Converter Reference Design; Test Report; Texas Instruments: Dallas, TX, USA, 2019. [Google Scholar]
- Chen, M.; Feng, R.; Zhu, E. Programmable ±HV Power Supply with Low Static Power Consumption for Smart Probe; Texas Instruments: Dallas, TX, USA, 2022. [Google Scholar]
- Choi, H.; Yoon, C.; Yeom, J.-Y. A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Appl. Sci. 2017, 7, 354. [Google Scholar] [CrossRef]
- Rathod, V.T. A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers. Electronics 2019, 8, 169. [Google Scholar] [CrossRef]
- Navamani, J.D.; Vijayakumar, K.; Jegatheesan, R. Non-Isolated High Gain DC-DC Converter by Quadratic Boost Converter and Voltage Multiplier Cell. Ain Shams Eng. J. 2018, 9, 1397–1406. [Google Scholar] [CrossRef]
- Sutikno, T.; Purnama, H.S.; Widodo, N.S.; Padmanaban, S.; Sahid, M.R. A review on non-isolated low-power DC–DC converter topologies with high output gain for solar photovoltaic system applications. Clean Energy 2022, 6, 557–572. [Google Scholar] [CrossRef]
- Jotham, L.J.; Ooi, C.A.; Teh, J. Non-Isolated Conventional DC-DC Converter Comparison for a Photovoltaic System: A Review. J. Renew. Sustain. Energy 2020, 12, 013502. [Google Scholar] [CrossRef]
- Pires, V.F.; Cordeiro, A.; Foito, D.; Silva, J.F.A. Dual Output and High Voltage Gain DC-DC Converter for PV and Fuel Cell Generators Connected to DC Bipolar Microgrids. IEEE Access 2021, 9, 157124–157133. [Google Scholar] [CrossRef]
- Mumtaz, F.; Zaihar Yahaya, N.; Tanzim Meraj, S.; Singh, B.; Kannan, R.; Ibrahim, O. Review on Non-Isolated DC-DC Converters and Their Control Techniques for Renewable Energy Applications. Ain Shams Eng. J. 2021, 12, 3747–3763. [Google Scholar] [CrossRef]
- Prabhakaran, P.; Agarwal, V. Novel Boost-SEPIC Type Interleaved DC–DC Converter for Mitigation of Voltage Imbalance in a Low-Voltage Bipolar DC Microgrid. IEEE Trans. Ind. Electron. 2020, 67, 6494–6504. [Google Scholar] [CrossRef]
- Gopi, A.; Saravanakumar, R. High Step-up Isolated Efficient Single Switch DC-DC Converter for Renewable Energy Source. Ain Shams Eng. J. 2014, 5, 1115–1127. [Google Scholar] [CrossRef]
- Affam, A.; Buswig, Y.M.; Othman, A.-K.B.H.; Julai, N.B.; Qays, O. A Review of Multiple Input DC-DC Converter Topologies Linked with Hybrid Electric Vehicles and Renewable Energy Systems. Renew. Sustain. Energy Rev. 2021, 135, 110186. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, G.; Zhao, C.; Wang, Y.; Wang, Y.; Li, J. Review of the Design of Power Ultrasonic Generator for Piezoelectric Transducer. Ultrason. Sonochem. 2023, 96, 106438. [Google Scholar] [CrossRef]
- Jonveaux, L.; Schloh, C.; Meng, W.; Arija, J.; Rintoul, J. Review of Current Simple Ultrasound Hardware Considerations, Designs, and Processing Opportunities. J. Open Hardw. 2022, 6, 3. [Google Scholar] [CrossRef]
- Boni, E.; Yu, A.C.H.; Freear, S.; Jensen, J.A.; Tortoli, P. Ultrasound Open Platforms for Next-Generation Imaging Technique Development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1078–1092. [Google Scholar] [CrossRef]
- Aljafari, B.; Devarajan, G.; Arumugam, S.; Vairavasundaram, I. Design and Implementation of Hybrid PV/Battery-Based Improved Single-Ended Primary-Inductor Converter-Fed Hybrid Electric Vehicle. Int. Trans. Electr. Energy Syst. 2022, 2022, 2934167. [Google Scholar] [CrossRef]
- Shaik, R.K.; Dhanamjayulu, C. Synthesis and Implementation of a Multiport Dual Input-Dual Output Converter for Electric Vehicle Applications. Int. Trans. Electr. Energy Syst. 2022, 2022, 9279475. [Google Scholar] [CrossRef]
- Annambhotla, L.T.S.; Parthiban, P. Non-Isolated Power Factor Corrected AC/DC Converter with High Step-Down Voltage Ratio for Low-Power Applications. Int. Trans. Electr. Energy Syst. 2022, 2022, 7142957. [Google Scholar] [CrossRef]
- Nathan, K.; Ghosh, S.; Siwakoti, Y.; Long, T. A New DC–DC Converter for Photovoltaic Systems: Coupled-Inductors Combined Cuk-SEPIC Converter. IEEE Trans. Energy Convers. 2018, 34, 191–201. [Google Scholar] [CrossRef]
- Pires, V.F.; Foito, D.; Silva, J.F. A Single Switch Hybrid DC/DC Converter with Extended Static Gain for Photovoltaic Applications. Electr. Power Syst. Res. 2017, 146, 228–235. [Google Scholar] [CrossRef]
- Elsayad, N.; Moradisizkoohi, H.; Mohammed, O. A New Three-Level Flying-Capacitor Boost Converter with an Integrated LC2D Output Network for Fuel-Cell Vehicles: Analysis and Design. Inventions 2018, 3, 61. [Google Scholar] [CrossRef]
- Moradisizkoohi, H.; Elsayad, N.; Mohammed, O. A Soft-Switched DC/DC Converter Using Integrated Dual Half-Bridge with High Voltage Gain and Low Voltage Stress for DC Microgrid Applications. Inventions 2018, 3, 63. [Google Scholar] [CrossRef]
- Kurdkandi, N.V.; Nouri, T. Analysis of an efficient interleaved ultra-large gain DC–DC converter for DC microgrid applications. IET Power Electron. 2020, 13, 2008–2018. [Google Scholar] [CrossRef]
- Azizkandi, M.E.; Sedaghati, F.; Shayeghi, H.; Blaabjerg, F. A High Voltage Gain DC–DC Converter Based on Three Winding Coupled Inductor and Voltage Multiplier Cell. IEEE Trans. Power Electron. 2020, 35, 4558–4567. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, H. A Bipolar Output Active-Switched-Inductor Converter for Bipolar DC Microgrid. Int. J. Photoenergy 2022, 2022, 72521633. [Google Scholar] [CrossRef]
- Hasanpour, S.; Nouri, T. New Coupled-Inductor High-Gain DC/DC Converter with Bipolar Outputs. IEEE Trans. Ind. Electron. 2023, 99, 1–12. [Google Scholar] [CrossRef]
- Allehyani, A. Analysis of a Symmetrical Multilevel DC-DC Boost Converter with Ripple Reduction Structure for Solar PV Systems. Alex. Eng. J. 2022, 61, 7055–7065. [Google Scholar] [CrossRef]
- Nouhi, H.; Talavat, V.; Farhadi-Kangarlu, M. A Nonisolated Single-Switch Coupled Inductor-Based DC-DC Converter with High Voltage Gain for Renewable Power Generation Systems. Int. Trans. Electr. Energy Syst. 2023, 2023, e2600232. [Google Scholar] [CrossRef]
- Pourjafar, S.; Shayeghi, H.; Hashemzadeh, S.M.; Sedaghati, F.; Maalandish, M. A Non-Isolated High Step-up DC–DC Converter Using Magnetic Coupling and Voltage Multiplier Circuit. IET Power Electron. 2021, 14, 1637–1655. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, B. Equivalent-Small-Parameter Analysis of DC/DC Switched-Mode Converter; CPSS Power Electronics Series; Springer: Singapore, 2019; ISBN 9789811325731. [Google Scholar]
- Elisa, G.; Abhishek, V.; Jun, S. Designing Bipolar High Voltage SEPIC Supply for Ultrasound Smart Probe; Application Note; Texas Instruments: Dallas, TX, USA, 2023. [Google Scholar]
Parameters | Specifications |
---|---|
Input voltage | 5 V |
Output voltage | Bipolar and symmetrical from 50 to 80 V at 25 mA |
Switching frequency | 250 kHz |
Overall system efficiency | ≥80% |
Voltage symmetry with equal load on both rails | ≤2% |
Elements | Specifications |
---|---|
Duty cycle | |
10 H | |
470 H | |
1.5 mH | |
mosfet = 100 V | |
= 58 m = 3.2 V, = 9 ns | |
220 nF | |
2.2 F | |
1.65 F | |
100 nF | |
= 0.8 V, = 150 V | |
10 F |
Converter | Voltage Gain | Switch | Diodes | Inductors | Capacitors |
---|---|---|---|---|---|
[30] | 1 | 2 | 3 | 4 | |
[31] | 1 | 3 | 2 | 4 | |
[36] | 2 | 2 | 2 | 4 | |
[38] | 2 | 6 | 2 | 6 | |
Proposed | 1 | 4 | 4 | 5 |
Work | Input Voltage Range | Output Voltage | Power | Peak Efficiency | Output Voltage Regulation | Voltage Symmetry with Equal Load on Both Rails | Topology |
---|---|---|---|---|---|---|---|
[9] | 4.25–5.5 V | ±80 V | 4 W | 80% | ±2% | 1% | SEPIC-Cuk |
[10] | 5 V | ±50 V | 5.6 W | NA * | NA | NA | NA |
[11] | 3.7 V | ±70 V | 7.5 W | NA | NA | NA | NA |
[12] | 12 V | ±60 V | 6 W | 88.2% | ±4% | 2% | SEPIC-Cuk |
[13] | 12 V | ±75 V | 1.5 W | 88% | ±2% | 1% | SEPIC-Cuk |
[42] | 3.6–8.4 V | ±100 V | 4 W | 75% | ±2% | 1% | Pre-boost + SEPIC-Cuk |
Proposed | 4.75–12 V | ±80 V | 5 W | 82% | ±1.3% | 1.09% | Voltage multiplier cell + SEPIC-Cuk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbele Ndzana, N.D.; Lekini Nkodo, C.B.; Tolok Nelem, A.; Pierre Pesdjock, M.J.; Abanda, Y.A.; Melingui, A.; Zeh, O.F.; Ele, P. Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter. Inventions 2023, 8, 113. https://doi.org/10.3390/inventions8050113
Mbele Ndzana ND, Lekini Nkodo CB, Tolok Nelem A, Pierre Pesdjock MJ, Abanda YA, Melingui A, Zeh OF, Ele P. Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter. Inventions. 2023; 8(5):113. https://doi.org/10.3390/inventions8050113
Chicago/Turabian StyleMbele Ndzana, Nicolas Daniel, Claude Bernard Lekini Nkodo, Aristide Tolok Nelem, Mathieu Jean Pierre Pesdjock, Yannick Antoine Abanda, Achille Melingui, Odile Fernande Zeh, and Pierre Ele. 2023. "Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter" Inventions 8, no. 5: 113. https://doi.org/10.3390/inventions8050113
APA StyleMbele Ndzana, N. D., Lekini Nkodo, C. B., Tolok Nelem, A., Pierre Pesdjock, M. J., Abanda, Y. A., Melingui, A., Zeh, O. F., & Ele, P. (2023). Contribution to the Development of a Smart Ultrasound Scanner: Design and Analysis of the High-Voltage Power Supply of the Transmitter. Inventions, 8(5), 113. https://doi.org/10.3390/inventions8050113