A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles
Abstract
:1. Introduction
2. Methodology
2.1. A Modified Theoretical Model
2.2. Experimental Set-Up
3. Validation
3.1. Comparison of Experiments and Theoretical Results
3.2. Further Discussions
4. Results and Discussion
4.1. Effect of Phase Transition Duration
4.2. Effect of Air Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnsen, E.; Colonius, T. Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 2009, 629, 231–262. [Google Scholar] [CrossRef]
- Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998, 361, 75–116. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, A.M.; Liu, Y.L. Bubble dynamics and its applications. J. Hydrodyn. 2018, 30, 975–991. [Google Scholar] [CrossRef]
- Melissaris, T.; Schenke, S.; Bulten, N.; Terwisga, T.J. On the accuracy of predicting cavitation impact loads on marine propellers. Wear 2020, 456, 203393. [Google Scholar] [CrossRef]
- Han, B.; Kohler, K. Dynamics of laser-induced bubble pairs. J. Fluid Mech 2015, 771, 706–742. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Gao, Y.H.; Du, X.Z. Stability mechanisms of oscillating vapor bubbles in acoustic fields. Ultrason. Sonochem. 2018, 40, 808–814. [Google Scholar] [CrossRef]
- Ma, X.J.; Huang, B.; Zhao, X. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrason. Sonochem. 2018, 43, 80–90. [Google Scholar] [CrossRef]
- Shan, M.L.; Chen, B.Y.; Yao, C. Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge. Plasma Sci. Technol. 2019, 21, 16–22. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.L.; Khoo, B.C. Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble. J. Fluid Mech. 2021, 919, A16. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Ma, X. Dynamic behavior of a single bubble between the free surface and rigid wall. Ultrason. Sonochem. 2020, 67, 105147. [Google Scholar] [CrossRef]
- Xu, W.L. Interaction of a Cavitation Bubble and an Air Bubble with a Rigid Boundary. J. Hydrodyn. 2010, 22, 503–512. [Google Scholar] [CrossRef]
- Zhang, A.M. Experiments on Bubble Dynamics between a Free Surface and a Rigid Wall. Exp. Fluids 2013, 54, 1602. [Google Scholar] [CrossRef]
- Fujikawa, S.; Akamatsu, T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 1980, 97, 481–512. [Google Scholar] [CrossRef]
- Han, R.; Zhang, A.M.; Tan, S.; Li, S. Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales. J. Fluid Mech. 2022, 932, A8. [Google Scholar] [CrossRef]
- Zhang, A.M.; Li, S.M.; Cui, P.; Li, S.; Liu, Y.L. A unified theory for bubble dynamics. Phys. Fluids 2023, 35, 033323. [Google Scholar] [CrossRef]
- Zein, A.; Hantke, M.; Warnecke, G. On the modeling and simulation of a laser-induced cavitation bubble. Int. J. Numer. Methods Fluids 2013, 73, 172–203. [Google Scholar] [CrossRef]
- Lee, H.; Gojani, A.B.; Han, T.; Yoh, J.J. Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadowgraph. J. Vis. 2011, 14, 331–337. [Google Scholar] [CrossRef]
- Sagar, H.; Moctar, O. Numerical simulation of a laser-induced cavitation bubble near a solid boundary considering phase change. Ship Technol. Res. 2018, 65, 1–17. [Google Scholar] [CrossRef]
- Phan, T.H.; Nguyen, V.T.; Duy, T.N. Influence of phase-change on the collapse and rebound stages of a single spark-generated cavitation bubble. Int. J. Heat Mass Transf. 2022, 184, 122270. [Google Scholar] [CrossRef]
- Zhong, X.X.; Eshraghi, J.; Vlachos, P. A model for a laser-induced cavitation bubble. Int. J. Multiph. Flow. 2020, 132, 103433. [Google Scholar] [CrossRef]
- Aganin, A.A.; Khismatullina, A.N. Influence of the phase interface mass transfer characteristics on the cavitation bubble collapse in water. Ocean Eng. 2023, 283, 115013. [Google Scholar] [CrossRef]
- Mustafin, N.I. Numerical Simulation of Collapse and Rebound of a Cavitation Bubble in Water. Lobachevskii J. Math. 2023, 44, 1771–1777. [Google Scholar] [CrossRef]
- Li, S.; Meer, D.V.d.; Zhang, A.M.; Prosperetti, A.; Lohse, D. Modelling large scale airgun-bubble dynamics with highly non-spherical features. International Journal of Multiphase Flow. Int. J. Multiph. Flow. 2020, 122, 103143. [Google Scholar] [CrossRef]
- Li, S.; Zhang, A.M.; Han, R.; Ma, Q. 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere. J. Comput. Phys. 2019, 392, 713–731. [Google Scholar] [CrossRef]
- Trummler, T.; Schmidt, S.J.; Adams, N.A. Numerical investigation of non-condensable gas effect on vapor bubble collapse. Phys. Fluids 2021, 33, 096107. [Google Scholar] [CrossRef]
- Sato, T.; Tinguely, M.; Oizumi, M.; Farhat, M. Evidence for hydrogen generation in laser- or spark-induced cavitation bubbles. Appl. Phys. Lett. 2013, 102, 074105. [Google Scholar] [CrossRef]
- Kaouther, K.; Hamdaoui, O. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble. Ultrason. Sonochem. 2018, 41, 449–457. [Google Scholar]
- Yasui, K. Alternative model of single-bubble sonoluminescence. Phys. Rev. E 1997, 56, 6750. [Google Scholar] [CrossRef]
- Plesset, M.S.; Pasadena, C. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 48, 277–282. [Google Scholar] [CrossRef]
- Alty, T.; Mackay, C.A. The accommodation coefficient and the evaporation coefficient of water. Proc. R. Soc. 1935, 149, 104–116. [Google Scholar]
- Yasui, K. Effects of thermal conduction on bubble dynamics near the sonolu- minescence threshold. J. Acoust. Soc. Am. 1995, 98, 2772–2782. [Google Scholar] [CrossRef]
- Prosperetti, A.; Lezzi, A. Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 1986, 168, 457–478. [Google Scholar] [CrossRef]
- Jebali, F.; Francois, M.X. Thermal resistance of a vapor-liquid He II interface. Phy. B Condensed Matter 1994, 194, 599–600. [Google Scholar] [CrossRef]
- Grunt, K.; Lewkowicz, M.; Pietrowicz, S.; Takada, S.; Kimura, N.; Murakami, M. Dynamics of vapour bubbles induced during the boiling of superfluid helium under microgravity conditions. Int. J. Heat Mass Trans. 2019, 134, 1073–1083. [Google Scholar] [CrossRef]
- Keller, J.; Miksis, M. Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 1980, 68, 628–633. [Google Scholar] [CrossRef]
- Cui, P.; Zhang, A.M.; Wang, S.; Khoo, B.C. Ice breaking by a collapsing bubble. J. Fluid Mech. 2018, 841, 287–309. [Google Scholar] [CrossRef]
- Akhatov, L.; Lindau, O.; Topolnikov, A.; Vlachos, R. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 2001, 13, 2805–2819. [Google Scholar] [CrossRef]
Physical Property | Symbol | Value | Unit |
---|---|---|---|
Sound speed in water | c | 1483 | |
Water density | 1000 | ||
Surface tension coefficient | 0.072 | ||
Water viscosity | 0.001 | Pa·s | |
Molar weight of vapor | 0.018 | ||
Molar weight of air | 0.02897 | ||
Avogadro constant | |||
Gas constant | 8.314 | ||
Intermolecular attraction of air | 0.1402 | ||
Intermolecular attraction of vapor | 0.5536 | ||
Volume occupied by air molecules | |||
Volume occupied by vapor molecules | |||
Gas constant of vapor | 461.52 | ||
Thermal accommodation coefficient | 1 | - | |
Thermal conductivity of vapor | 0.02 | ||
Thermal conductivity of water | 0.55 | ||
Boltzmann constant | k | ||
Stefan-Boltzmann constant | |||
Flow field temperature | 293.15 | K | |
Vapor specific heat capacity at constant volume | 1089 | ||
Specific heat capacity of air at constant volume | 717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, R.; Chen, J.; Guo, T. A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions 2023, 8, 131. https://doi.org/10.3390/inventions8050131
Han R, Chen J, Guo T. A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions. 2023; 8(5):131. https://doi.org/10.3390/inventions8050131
Chicago/Turabian StyleHan, Rui, Jiayi Chen, and Taikun Guo. 2023. "A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles" Inventions 8, no. 5: 131. https://doi.org/10.3390/inventions8050131
APA StyleHan, R., Chen, J., & Guo, T. (2023). A Modified Phase-Transition Model for Multi-Oscillations of Spark-Generated Bubbles. Inventions, 8(5), 131. https://doi.org/10.3390/inventions8050131