Development of the Phaseless Calibration Algorithm for a Digital Antenna Array
Abstract
:1. Introduction
- compensation for distortions introduced by faults in the antenna array during the RES operation;
- adjustment of the APD in the controlled array channels in order to maximize the desired performance of the RES. Uncontrolled failed channels are subject to repair and replacement;
- recording of a real antenna APD in the processor memory for later use with modern signal processing methods into the RES [17].
2. Materials and Methods
2.1. An Implementation of Antenna Array Calibration
2.2. Experimental Setup and Simulation Results of Digital Beamforming
3. Results
3.1. Simulation Model of the Calibration System
3.2. Results of Experimental Studies of Calibrating Algorithms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
AEC | Anechoic Chamber |
APD | Amplitude–Phase Distribution |
CCF | Cross-Correlation Function |
DAC | Digital-to-Analog Converter |
DAA | Digital Antenna Array |
DFT | Discrete Fourier Transform |
DTRM | Digital Transceiver Module |
DoA | Direction of Arrival |
DSP | Digital Signal Processing |
DSPC | DSP at Calibrated Channel |
DRP | Digital Radiation Pattern |
IDFT | Inverse Discrete Fourier Transform |
MIMO | Multiple-Input Multiple-Output |
PAA | Phased Antenna Arrays |
RBW | Resolution Bandwidth |
RES | Radio-Electronic System |
REV | Rotating Element Electric Field Vector |
RMS | Root Mean Square |
SLL | Sidelobe Level |
SNR | Signal-to-Noise Ratio |
TRM | Transceiver Module |
UAV | Unmanned Aerial Vehicle |
VNA | Vector Network Analyzer |
References
- Sarcione, M.; Kolias, N.; Booen, M.; McLaughlin, D.; Chang, M.C.; Hajimiri, A. Looking Ahead: The Future of RF Technology, Military and Homeland Perspectives. Microw. J. 2008, 51, 52–62. [Google Scholar]
- Yasentsev, D.; Shevgunov, T.; Efimov, E.; Tatarskiy, B. Using Ground-Based Passive Reflectors for Improving UAV Landing. Drones 2021, 5, 137. [Google Scholar] [CrossRef]
- Dobychina, E.; Malakhov, R.; Snastin, M. Digital Transceiver Module for On-Board Communication System. In Proceedings of the 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 6–10 July 2014; pp. 1–4. [Google Scholar]
- Kuwahara, Y. Phased Array Antenna with Temperature Compensating Capability. In Proceedings of the International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 15–18 October 1996; pp. 21–26. [Google Scholar]
- Natera, M.A.S.; Rodríguez-Osorio, R.M.; de Haro Ariet, L. Automated Measurement Procedure for the Calibration of Planar Active Arrays. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Bucci, O.M.; Migliore, M.D.; Panariello, G.; Sgambato, P. Accurate Diagnosis of Conformal Arrays from Near-Field Data Using the Matrix Method. IEEE Trans. Antennas Propag. 2005, 53, 1114–1120. [Google Scholar] [CrossRef]
- Wang, J.J.H. An Examination of the Theory and Practices of Planar Near-Field Measurement. IEEE Trans. Antennas Propag. 1988, 36, 746–753. [Google Scholar] [CrossRef]
- Migliore, M.D. A Compressed Sensing Approach for Array Diagnosis From a Small Set of Near-Field Measurements. IEEE Trans. Antennas Propag. 2011, 59, 2127–2133. [Google Scholar] [CrossRef]
- Hansen, T.B. Complex-Point Dipole Formulation of Probe-Corrected Cylindrical and Spherical Near-Field Scanning of Electromagnetic Fields. IEEE Trans. Antennas Propag. 2009, 57, 728–741. [Google Scholar] [CrossRef]
- Logan, J.T.; Reinhard, D.S.; Hauck, K.E. Phased Array Calibration and Diagnostics Utilizing a Student-Built Planar near-Field System. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 12–15 October 2010; pp. 279–286. [Google Scholar]
- Y.I.C. Technologies Ltd. Antenna Parameters Testing with Near-Field Scanning Technology [White Paper], 12p. Available online: https://yictechnologies.com/wp-content/uploads/2023/06/RFS-White-Paper-Antenna-Parameters-Testing-with.pdf (accessed on 22 May 2023).
- Dobychina, E.M.; Snastin, M.V.; Efimov, E.N.; Shevgunov, T.Y. Unmanned Aerial Vehicle Antenna Measurement Using Anechoic Chamber. TEM J. 2020, 9, 1480–1487. [Google Scholar] [CrossRef]
- Aumann, H.M.; Fenn, A.J.; Willwerth, F.G. Phased Array Antenna Calibration and Pattern Prediction Using Mutual Coupling Measurements. IEEE Trans. Antennas Propag. 1989, 37, 844–850. [Google Scholar] [CrossRef]
- Salas-Natera, M.A.; Rodriguez-Osorio, R.M.; de Haro, L. Procedure for Measurement, Characterization, and Calibration of Active Antenna Arrays. IEEE Trans. Instrum. Meas. 2013, 62, 377–391. [Google Scholar] [CrossRef]
- Anderson, A.P.; Sali, S. New Possibilities for Phaseless Microwave Diagnostics. Part1: Error Reduction Techniques. IEE Proc. H Microw. Antennas Propag. UK 1985, 132, 291. [Google Scholar] [CrossRef]
- Yaccarino, R.G.; Rahmat-Samii, Y. Phaseless Bi-Polar Planar near-Field Measurements and Diagnostics of Array Antennas. IEEE Trans. Antennas Propag. 1999, 47, 574–583. [Google Scholar] [CrossRef]
- Shifrin, Y.S.; Liepin, U.R.; Golovina, L.V. Antenna array diagnostics based on the measurement of received or transmitted signals intensity. In Proceedings of the Second International Conference of Antenna Theory and Techniques, Kyiv, Ukraine, 20–22 May 1997. [Google Scholar]
- Shifrin, Y.S.; Liepin, U.R. The method of fast diagnostics and adaptation of phased antenna arrays. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, USA, 21–26 June 1998. [Google Scholar]
- Efimov, E. On the Effect of a Signal Delay on Cross-Spectral Correlation Function. In Proceedings of the 2022 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 15–17 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kozlov, R.; Gavrilov, K.; Shevgunov, T.; Kirdyashkin, V. Stepped-Frequency Continuous-Wave Signal Processing Method for Human Detection Using Radars for Sensing Rooms through the Wall. Inventions 2022, 7, 79. [Google Scholar] [CrossRef]
- Valdes-Garcia, A.; Sadhu, B.; Gu, X.; Tousi, Y.; Liu, D.; Reynolds, S.K.; Haillin, J.; Sahl, S.; Rexberg, L. Circuit and Antenna-in-Package Innovations for Scaled mmWave 5G Phased Array Modules. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–8. [Google Scholar]
- Luo, Q.; Gao, S.; Liu, W.; Gu, C. Low-Cost Smart Antennas. In Microwave and Wireless Technologies Series, 1st ed.; Wiley: Hoboken, NJ, USA, 2019; ISBN 978-1-119-42279-2. [Google Scholar]
- Jeong, N.S.; Ou, Y.-C.; Tassoudji, A.; Dunworth, J.; Koymen, O.; Raghavan, V. A Recent Development of Antenna-in-Package for 5G Millimeter-Wave Applications (Invited Paper). In Proceedings of the 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 9–10 April 2018; pp. 1–3. [Google Scholar]
- Sadhu, B.; Tousi, Y.; Hallin, J.; Sahl, S.; Reynolds, S.K.; Renström, Ö.; Sjögren, K.; Haapalahti, O.; Mazor, N.; Bokinge, B.; et al. A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications. IEEE J. Solid-State Circuits 2017, 52, 3373–3391. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.-Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Woods, R.; McAllister, J.; Yi, Y.; Lightbody, G. FPGA-Based Implementation of Signal Processing Systems, 1st ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 978-1-119-07795-4. [Google Scholar]
- Lohou, A.; Chaimbault, D.; Lesur, B.; Karas, A.; Lintignat, J.; Jarry, B. Ka-Band MMIC Variable Gain Low Noise Amplifier for Electronic Scanning Antenna. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; pp. 337–340. [Google Scholar]
- Guschina, O.A. Estimation of digital complex signal delay in time domain using polynomial interpolation. J. Theor. Appl. Inf. Technol. 2022, 100, 1038–1050. Available online: http://www.jatit.org/volumes/Vol100No4/13Vol100No4.pdf (accessed on 2 September 2023).
- Nishimori, K.; Hiraguri, T.; Mitsui, T.; Yamada, H. Effectiveness of Implicit Beamforming with Large Number of Antennas Using Calibration Technique in Multi-User MIMO System. Electronics 2017, 6, 91. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, W.; Deng, Y.; Hu, C.; Zeng, T. Calibration Method of Array Errors for Wideband MIMO Imaging Radar Based on Multiple Prominent Targets. Remote Sens. 2021, 13, 2997. [Google Scholar] [CrossRef]
- Watanabe, M.; Shimada, M. Polarimetric Calibration for a Ground-Based Radar, and Comparison of the Polarimetric Parameters with Air-Borne SAR Obtained from a Forest. Remote Sens. 2017, 9, 342. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, F.; Chen, L.; Li, Z.; Yang, L. The Calibration Method of Multi-Channel Spatially Varying Amplitude-Phase Inconsistency Errors in Airborne Array TomoSAR. Remote Sens. 2023, 15, 3032. [Google Scholar] [CrossRef]
- Takahshi, T.; Nakamoto, N.; Ohtsuka, M.; Aoki, T.; Konishi, Y.; Yajima, M. A Simple On-Board Calibration Method and Its Accuracy for Mechanical Distortions of Satellite Phased Array Antennas. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 1573–1577. [Google Scholar]
- Zalawadia, K.; Jain, P.; Shah, H.; Dalal, U. An Efficient Calibration Scheme for Satellite Onboard Receive Digital Beamformer. IETE J. Res. 2015, 61, 590–596. [Google Scholar] [CrossRef]
- Lee, D.-H.; Seo, J.-W.; Lee, M.-S.; Chung, D.; Lee, D.; Bang, J.-H.; Satriyotomo, B.; Pyo, S. An S-Band-Receiving Phased-Array Antenna with a Phase-Deviation-Minimized Calibration Method for LEO Satellite Ground Station Applications. Electronics 2022, 11, 3847. [Google Scholar] [CrossRef]
- Daneshmand, S.; Sokhandan, N.; Zaeri-Amirani, M.; Lachapelle, G. Precise Calibration of a GNSS Antenna Array for Adaptive Beamforming Applications. Sensors 2014, 14, 9669–9691. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Wu, X.; Yue, X.; Zhang, L.; Wang, L. Calibration of Phased-Array High-Frequency Radar on an Anchored Floating Platform. Remote Sens. 2022, 14, 2174. [Google Scholar] [CrossRef]
- Yasentsev, D.A.; Tatarskiy, B.G. Investigation of SAR Resolution at Translational and Rotational Motion of Interlinked Antenna Phase Centers. In Proceedings of the 2022 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russian, 15–17 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Pan, C.; Ba, X.; Tang, Y.; Zhang, F.; Zhang, Y.; Wang, Z.; Fan, W. Phased Array Antenna Calibration Method Experimental Validation and Comparison. Electronics 2023, 12, 489. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Zhang, Z. A New Gain-Phase Error Pre-Calibration Method for Uniform Linear Arrays. Sensors 2023, 23, 2544. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, N.; Salucci, M.; Rocca, P.; Massa, A. Power Pattern Sensitivity to Calibration Errors and Mutual Coupling in Linear Arrays through Circular Interval Arithmetics. Sensors 2016, 16, 791. [Google Scholar] [CrossRef]
- Mano, S.; Katagi, T. A Method for Measuring Amplitude and Phase of Each Radiating Element of a Phased Array Antenna. Electron. Commun. Jpn. Part I Commun. 1982, 65, 58–64. [Google Scholar] [CrossRef]
- Takahashi, T.; Konishi, Y.; Chiba, I. A Novel Amplitude-Only Measurement Method to Determine Element Fields in Phased Arrays. IEEE Trans. Antennas Propag. 2012, 60, 3222–3230. [Google Scholar] [CrossRef]
- Takahashi, T.; Miyashita, H.; Konishi, Y.; Makino, S. Theoretical Study on Measurement Accuracy of Rotating Element Electric Field Vector (REV) Method. Electron. Commun. Jpn. Part I Commun. 2006, 89, 22–33. [Google Scholar] [CrossRef]
- Long, R.; Ouyang, J.; Yang, F.; Han, W.; Zhou, L. Fast Amplitude-Only Measurement Method for Phased Array Calibration. IEEE Trans. Antennas Propagat. 2017, 65, 1815–1822. [Google Scholar] [CrossRef]
- Fadamiro, A.O.; Semomhe, A.A.-H.; Famoriji, O.J.; Lin, F. A Multiple Element Calibration Algorithm for Active Phased Array Antenna. IEEE J. Multiscale Multiphysics Comput. Tech. 2019, 4, 163–170. [Google Scholar] [CrossRef]
- Fadamiro, A.; Famoriji, O.; Ali, A.-H.; Zakariyya, R.; Zhang, Z.; Lin, F. A Fast and Accurate Multi-Element Calibration Algorithm of an Active Phased Antenna Array. Prog. Electromagn. Res. M 2019, 78, 49–58. [Google Scholar] [CrossRef]
- Fadamiro, A.O.; Famoriji, O.J.; Kashif, R.; Ali, M.S.; Lin, F. An Improved Calibration Algorithm for Active Phased Array Antenna. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar]
- Steyskal, H. Digital Beamforming Antennas—An Introduction. Microw. J. 1986, 30, 107. [Google Scholar]
- Litva, J. Digital Beamforming in Wireless Communications; Artech House Publishers: Boston, MA, USA, 1996; ISBN 978-0-89006-712-3. [Google Scholar]
- Fulton, C.; Yeary, M.; Thompson, D.; Lake, J.; Mitchell, A. Digital Phased Arrays: Challenges and Opportunities. Proc. IEEE 2016, 104, 487–503. [Google Scholar] [CrossRef]
- Oppenheim, A.; Schafer, R. Discrete-Time Signal Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-198842-2. [Google Scholar]
- Shevgunov, T.; Efimov, E.; Guschina, O. Estimation of a Spectral Correlation Function Using a Time-Smoothing Cyclic Periodogram and FFT Interpolation—2N-FFT Algorithm. Sensors 2023, 23, 215. [Google Scholar] [CrossRef]
- Kuo, S.M.; Gan, W.-S. Digital Signal Processors: Architectures, Implementations, and Applications, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004; ISBN 978-0-13-035214-9. [Google Scholar]
- Welch, T.B.; Wright, C.H.G.; Morrow, M.G. Real-Time Digital Signal Processing from MATLAB® to C with the TMS320C6x DSPs, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4398-8303-7. [Google Scholar]
- Proakis, J.; Manolakis, D. Digital Signal Processing, 4th ed.; Pearson: Upper Saddle River, NJ, USA, 2006; ISBN 978-0-13-187374-2. [Google Scholar]
- Guschina, O. Cyclostationary Analysis of Electric Power in a Resonant Circuit under Periodic Excitation. In Proceedings of the 2022 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 15–17 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Sorace, R. Phased Array Calibration. IEEE Trans. Antennas Propag. 2001, 49, 517–525. [Google Scholar] [CrossRef]
- Dobychina, E.; Snastin, M. Dynamic Correction of the Influence of Long Measuring Path Irregularity in Antenna Tests. Appl. Sci. 2021, 11, 8183. [Google Scholar] [CrossRef]
- Dobychina, E.; Snastin, M. Digital Beamform Simulation in Anechoic Chamber. ITM Web Conf. 2019, 30, 05003. [Google Scholar] [CrossRef]
- Oppenheim, A.; Schafer, R. Discrete-Time Signal Processing, 3rd ed.; Pearson Education Limited: Harlow, UK, 2014. [Google Scholar]
- Falk, J.; Händel, P.; Jansson, M. Direction Finding for Electronic Warfare Systems Using the Phase of the Cross Spectral Density. In Proceedings of the RadioVetenskap och Kommunikation (RVK), Stockholm, Sweden, 11–13 June 2002; pp. 264–268. Available online: https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-44274 (accessed on 2 October 2023).
- Sorace, R.; Reinhardt, V.; Chan, C. Phased Array Calibration Orthogonal Phase Sequence. U.S. Patent 5,861,843, 19 January 1999. [Google Scholar]
- Snastin, M.V.; Dobychina, E.M. Calibration of a Planar Scanner for Near-Field Antenna Measurements. In Proceedings of the 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 19–20 March 2020; pp. 1–4. [Google Scholar]
- Fascista, A.; Keskin, M.; Coluccia, A.; Wymeersch, H.; Seco-Granados, G. RIS-aided joint localization and synchronization with a single-antenna receiver: Beamforming design and low-complexity estimation. IEEE J. Sel. Topics Signal Process. 2022, 16, 1141–1156. [Google Scholar] [CrossRef]
Frequency Bands | Method | Classification Attribute | Characteristic Feature |
---|---|---|---|
High frequency | Bench | testing of antenna array | requires test facility, may be realized in an anechoic chamber |
Regular | routine maintenance | use of internal digital signals with the integrated control system | |
Near-field | measurement of the field distribution near the aperture | implemented with a near-field scanner | |
Far-field | measurement at the far-field distance | requires special antenna test ranges | |
Vector | reference signal is required | use of high-precision measuring equipment | |
Scalar (phaseless) | no special phase reference is needed | amplitude-only measurement | |
External | analysis of the field distribution over the aperture or near- or far-field regions | near-field measurements are most promising | |
Internal | requires additional elements in the PAA | autonomous calibration possible, requires internal control system | |
REV | measurements in all possible phase states | the large number of measurements required to achieve accuracy | |
Current method | measurements in four orthogonal phase states | reduced calibration time | |
Low frequency | monitoring the integrity and serviceability of control circuits, matching digital codes and analog beam steering control signals | does not provide information about the real amplitude and phase distribution of the antenna array |
SNR, dB | M | , Degree | Convergence of the Calibration Process | Possible Instability of the Calibration Process |
---|---|---|---|---|
≤0 | 1 | 180 | + | + |
4 | 1 | 18 | + | + |
8 | 4 | 6.5 | + | − |
10 | 8 | −3.2 | + | − |
16 | 4 | −2.25 | + | − |
16 | 1.5 | + | − |
SNR, dB | M | , Degree | ζ, Degree | At Which Iteration the Error Is Detected | At Which Iteration Is the Instability Observed |
---|---|---|---|---|---|
≤0 | 1 | 180 | 0 | 2 | 5 |
4 | 1 | 18 | 0 | 0 | 5 |
10 | 8 | 3.2 | ≤45 | 1 | stable |
≤8 | 1 | ||||
0 | 0 |
Phase Shift | SNR | , Degree | , Degree | , dB | , mm |
---|---|---|---|---|---|
Physical antenna moving | 30 | 0 | 4.47 | −32.4 | 0.37 |
9…18 in 5 channels out of 15 | 18.9 | −31 | 1.6 | ||
Mathematically introduced | 16 | 9…18 in 5 channels out of 15 | 2.7 | −28 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobychina, E.; Snastin, M.; Savchenko, V.; Shevgunov, T. Development of the Phaseless Calibration Algorithm for a Digital Antenna Array. Inventions 2023, 8, 155. https://doi.org/10.3390/inventions8060155
Dobychina E, Snastin M, Savchenko V, Shevgunov T. Development of the Phaseless Calibration Algorithm for a Digital Antenna Array. Inventions. 2023; 8(6):155. https://doi.org/10.3390/inventions8060155
Chicago/Turabian StyleDobychina, Elena, Mikhail Snastin, Vladimir Savchenko, and Timofey Shevgunov. 2023. "Development of the Phaseless Calibration Algorithm for a Digital Antenna Array" Inventions 8, no. 6: 155. https://doi.org/10.3390/inventions8060155
APA StyleDobychina, E., Snastin, M., Savchenko, V., & Shevgunov, T. (2023). Development of the Phaseless Calibration Algorithm for a Digital Antenna Array. Inventions, 8(6), 155. https://doi.org/10.3390/inventions8060155