A Review of Perspectives on Developing Floating Wind Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. World’s Floating Wind Concepts
2.1.1. World’s Spar-Buoy Floating Wind Concepts
2.1.2. World’s Semi-Submersible Floating Wind Concepts
2.1.3. World’s Barge, TLP, and Multi-Turbine Floating Wind Concepts
2.2. World’s Installed Floating Wind Projects in the Period 2008–2020
2.3. World’s Planned Floating Wind Projects in the Period 2020–2027
- The US had a power capacity of 2.45 GW, coming from nine floating wind projects in the period 2023–2027.
- Korea had a power capacity of 1.6 GW, coming from seven floating wind projects in the period 2020–2024.
- France had a power capacity of 113.5 MW, coming from five projects in the period 2021–2022.
- Ireland had a power capacity of 106 MW, coming from two projects in 2022.
- The UK had a power capacity of 105 MW, coming from two projects in 2021.
- Spain had a power capacity of 103.2 MW, coming from six projects in the period 2020–2021.
- Norway had a power capacity of 102.6 MW, coming from five projects in the period 2020–2023.
- Japan had a power capacity of 28 MW, coming from three floating wind projects in the period 2020–2023.
2.4. Further Details on Some of the Presented World’s Installed and Planned Floating Wind Projects in the Period 2009–2026 (Based on Table 3 and Table 4)
3. Results
3.1. Results from Table 2 (World’s Floating Wind Turbine Concepts—Part 1)
3.2. Results from Table 2 (World’s Floating Wind Turbine Concepts—Part 2)
3.3. Results from Table 2 (World’s Floating Wind-Turbine Concepts—Part 3)
3.4. Results from Table 3 (World’s Installed Floating Wind Turbine Projects in the Period 2008–2020)
3.5. Results from Table 4 (World’s Planned Floating Wind-Turbine Projects in the Period 2020–2027)
3.6. Results from Table 5 (Further Details on Costs of Some of the Presented World’s Installed and Planned Floating Wind Projects in the Period 2009–2026)
3.7. Results from Table 5 (Further Details about the Wind Speeds of Some of the Presented World’s Installed and Planned Floating Wind Projects in the Period 2009–2026)
3.8. Results from Table 5 (Further Details about the Water Depths of Some of the Presented World’s Installed and Planned Floating Wind Projects in the Period 2009–2026)
3.9. Results from Table 5 (Further Details about the Distance to Shore of Some of the Presented World’s Installed and Planned Floating Wind Projects in the Period 2009–2026)
4. Discussion
4.1. Discussions of the Data Presented in This Paper, with a Particular Focus on the Data Presented in Section 3, Which Addresses the Reliability of Some of the Paper’s Data References
4.2. Further Discussion of the Data Presented in Section 3
4.2.1. Discussion of the Results for Global Floating Wind Turbine Concepts Produced by the Section 3 Data
4.2.2. Discussion of the Results for the Global Installed Floating Wind Turbine Projects in the Period 2008–2020
4.2.3. Discussion of the Global Planned Floating Wind Turbine Projects’ Results for the Period 2020–2027
4.2.4. Discussions of the Presented Installed and Planned Floating Wind Turbine Projects’ Results in Terms of Their Corresponding Countries and Their Contributing Costs in the Period 2009–2026
4.2.5. Discussion of the Presented Installed and Planned Floating Wind Turbine Project Results in Terms of Their Corresponding Countries and Their Contributing Wind Speeds in the Period 2009–2026
4.2.6. Discussion of the Presented Installed and Planned Floating Wind Turbine Project Results in Terms of Their Corresponding Countries and Their Contributing Water Depths in the Period 2009–2026
4.2.7. Discussion of the Presented Installed and Planned Floating Wind Turbine Project Results in Terms of Their Corresponding Countries and Their Contributing Distances to Shore in the Period 2009–2026
4.3. References Regarding the Global Floating Wind Situation with a Focus on Europe
4.4. Power-to-X Technology References of Relevance to Floating Wind Projects
4.5. Research Related to the Feasibility of Floating Wind Projects in Romania and Relevant Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz, A.; Onea, F.; Rusu, E. Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore. Energies 2020, 13, 4832. [Google Scholar] [CrossRef]
- Onea, F.; Ruiz, A.; Rusu, E. An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore. Energies 2020, 13, 3986. [Google Scholar] [CrossRef]
- Girleanu, A.; Onea, F.; Rusu, E. Assessment of the Wind Energy Potential along the Romanian Coastal Zone. Inventions 2021, 6, 41. [Google Scholar] [CrossRef]
- ETIP Wind. Floating Offshore Wind: Delivering Climate Neutrality. 2020. Available online: https://etipwind.eu/news/floating-offshore-wind-delivering-climate-neutrality/ (accessed on 18 February 2024).
- ABB and ZERO. Floating Offshore Wind—Norway’s Next Offshore Boom? 2018. Available online: https://new.abb.com/docs/librariesprovider50/media/tv1012-br-havvind-notat-til-zerokonferansen---engelsk.pdf (accessed on 18 February 2024).
- Wind Europe. Scaling up Floating Offshore Wind towards Competitiveness. 2021. Available online: https://windeurope.org/policy/position-papers/scaling-up-floating-offshore-wind-towards-competitiveness/ (accessed on 18 February 2024).
- Wind Europe. Floating Offshore Wind Energy: A Policy Blueprint for Europe. 2017. Available online: https://windeurope.org/policy/position-papers/floating-offshore-wind-energy-a-policy-blueprint-for-europe/ (accessed on 18 February 2024).
- Onea, F.; Rusu, E.; Rusu, L. Assessment of the Offshore Wind Energy Potential in the Romanian Exclusive Economic Zone. J. Mar. Sci. Eng. 2021, 9, 531. [Google Scholar] [CrossRef]
- Lathigara, A.; Zhao, F. Floating Offshore Wind—A Global Opportunity; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Jakobsen, E.G.; Ironside, N. Oceans Unlocked—A Floating Wind Future. 2021. Available online: https://www.cowi.com/insights/oceans-unlocked-a-floating-wind-future (accessed on 8 June 2022).
- BOEM. Floating Offshore Wind Turbine Development Assessment; ABSG Consulting Inc.: Spring, TX, USA, 2021. [Google Scholar]
- Kubiat, U.; Lemon, M. Drivers for and Barriers to the Take-up of Floating Offshore Wind Technology: A Comparison of Scotland and South Africa. Energies 2020, 13, 5618. [Google Scholar] [CrossRef]
- Kosasih, K.M.A.; Suzuki, H.; Niizato, H.; Okubo, S. Demonstration Experiment and Numerical Simulation Analysis of Full-Scale Barge-Type Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2020, 8, 880. [Google Scholar] [CrossRef]
- Möllerström, E. Wind Turbines from the Swedish Wind Energy Program and the Subsequent Commercialization Attempts—A Historical Review. Energies 2019, 12, 690. [Google Scholar] [CrossRef]
- Borg, M.; Jensen, M.W.; Urquhart, S.; Andersen, M.T.; Thomsen, J.B.; Stiesdal, H. Technical Definition of the Tetra Spar Demonstrator Floating Wind Turbine Foundation. Energies 2020, 13, 4911. [Google Scholar] [CrossRef]
- Ishihara, T.; Liu, Y. Dynamic Response Analysis of a Semi-Submersible Floating Wind Turbine in Combined Wave and Current Conditions Using Advanced Hydrodynamic Models. Energies 2020, 13, 5820. [Google Scholar] [CrossRef]
- Chen, J.; Kim, M.H. Review of Recent Offshore Wind Turbine Research and Optimization Methodologies in Their Design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Yang, R.Y.; Chuang, T.C.; Zhao, C.; Johanning, L. Dynamic Response of an Offshore Floating Wind Turbine at Accidental Limit States—Mooring Failure Event. Appl. Sci. 2022, 12, 1525. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, L.; Shi, W.; Wang, B.; Li, X. Dynamic Responses for Wind Float Floating Offshore Wind Turbine at Intermediate Water Depth Based on Local Conditions in China. J. Mar. Sci. Eng. 2021, 9, 1093. [Google Scholar] [CrossRef]
- Liu, S.; Chuang, Z.; Wang, K.; Li, X.; Chang, X.; Hou, L. Structural Parametric Optimization of the VOLTURNUS-S Semi-Submersible Foundation for a 15 MW Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2022, 10, 1181. [Google Scholar] [CrossRef]
- Ahn, H.; Ha, Y.J.; Cho, S.G.; Lim, C.H.; Kim, K.W. A Numerical Study on the Performance Evaluation of a Semi-Type Floating Offshore Wind Turbine System According to the Direction of the Incoming Waves. Energies 2022, 15, 5485. [Google Scholar] [CrossRef]
- Pham, T.D.; Shin, H. The Effect of the Second-Order Wave Loads on Drift Motion of a Semi-Submersible Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2020, 8, 859. [Google Scholar] [CrossRef]
- Desmond, C.J.; Hinrichs, J.C.; Murphy, J. Uncertainty in the Physical Testing of Floating Wind Energy Platforms’ Accuracy versus Precision. Energies 2019, 12, 435. [Google Scholar] [CrossRef]
- Ghigo, A.; Cottura, L.; Caradonna, R.; Bracco, G.; Mattiazzo, G. Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm. J. Mar. Sci. Eng. 2020, 8, 835. [Google Scholar] [CrossRef]
- Petracca, E.; Faraggiana, E.; Ghigo, A.; Sirigu, M.; Bracco, G.; Mattiazzo, G. Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System. Energies 2022, 15, 2739. [Google Scholar] [CrossRef]
- Qu, X.; Yao, Y. Numerical and Experimental Study of Hydrodynamic Response for a Novel Buoyancy-Distributed Floating Foundation Based on the Potential Theory. J. Mar. Sci. Eng. 2022, 10, 292. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, Y.; Shi, W.; Li, X. Investigation on a Large-Scale Braceless-TLP Floating Offshore Wind Turbine at Intermediate Water Depth. J. Mar. Sci. Eng. 2022, 10, 302. [Google Scholar] [CrossRef]
- González, J.; Payán, M.; Santos, J.; Gonzalez, A. Optimal Micro-Siting of Weathervaning Floating Wind Turbines. Energies 2021, 14, 886. [Google Scholar] [CrossRef]
- Walia, D.; Schünemann, P.; Hartmann, H.; Adam, F.; Großmann, J. Numerical and Physical Modeling of a Tension-Leg Platform for Offshore Wind Turbines. Energies 2021, 14, 3554. [Google Scholar] [CrossRef]
- Lamei, A.; Hayatdavoodi, M. On motion analysis and elastic response of floating offshore wind turbines. J. Ocean. Eng. Mar. Energy 2020, 6, 71–90. [Google Scholar] [CrossRef]
- Renzi, E.; Michele, S.; Zheng, S.; Jin, S.; Greaves, D. Niche Applications and Flexible Devices for Wave Energy Conversion: A Review. Energies 2021, 14, 6537. [Google Scholar] [CrossRef]
- Solomin, E.; Sirotkin, E.; Cuce, E.; Selvanathan, S.P.; Kumarasamy, S. Hybrid Floating Solar Plant Designs: A Review. Energies 2021, 14, 2751. [Google Scholar] [CrossRef]
- Haces-Fernandez, F.; Li, H.; Ramirez, D. Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico. Energies 2018, 11, 1084. [Google Scholar] [CrossRef]
- Aquatera. Dounreay-Tri Floating Wind Demonstration Project (Environmental Statement). 2016. Available online: https://marine.gov.scot/data/environmental-statement-dounreay-tri-floating-wind-demonstration-project (accessed on 18 February 2024).
- GICON. N.d. GICON SOF. A Modular and Cost Competitive TLP Solution. Brochure. Available online: https://www.gicon.de/index.php/gicon-gruppe/infomaterial?file=files/GICON-Gruppe/Downloads/Prospekte/Englisch/GICON%C2%AE%20SOF%20%28TLP%29%20-%20Offshore%20substructure.pdf&cid=8716 (accessed on 18 February 2024).
- Kyle, R.; Früh, W.G. The transitional states of a floating wind turbine during high levels of surge. Renew. Energy 2022, 200, 1469–1489. [Google Scholar] [CrossRef]
- Ulazia, A.; Nafarrate, A.; Ibarra-Berastegi, G.; Sáenz, J.; Carreno-Madinabeitia, S. The Consequences of Air Density Variations Over Northeastern Scotland for Offshore Wind Energy Potential. Energies 2019, 12, 2635. [Google Scholar] [CrossRef]
- Ramos, V.; Giannini, G.; Cabral, T.; López, M.; Santos, P.; Taveira-Pinto, F. Assessing the Effectiveness of a Novel WEC Concept as a Co-Located Solution for Offshore Wind Farms. J. Mar. Sci. Eng. 2022, 10, 267. [Google Scholar] [CrossRef]
- Andersen, M.T. Floating Foundations for Offshore Wind Turbines. Ph.D. Thesis, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark, 2016. [Google Scholar]
- Pham, T.D.; Dinh, M.C.; Kim, H.M.; Nguyen, T.T. Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms. Energies 2021, 14, 4571. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Y.; Liu, H.; Zhou, S.; Ni, Y.; Cai, C.; Zhou, T.; Li, Q. Review of Study on the Coupled Dynamic Performance of Floating Offshore Wind Turbines. Energies 2022, 15, 3970. [Google Scholar] [CrossRef]
- Edwards, E.C.; Holcombe, A.; Brown, S.; Ransley, E.; Hann, M.; Greaves, D. Evolution of floating offshore wind platforms: A review of at-sea devices. Renew. Sustain. Energy Rev. 2023, 183, 113416. [Google Scholar] [CrossRef]
- Baita-Saavedra, E.; Cordal-Iglesias, D.; Filgueira-Vizoso, A.; Morató, À.; Lamas-Galdo, I.; Álvarez-Feal, C.; Carral, L.; Castro-Santos, L. An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform. Appl. Sci. 2020, 10, 3678. [Google Scholar] [CrossRef]
- Arredondo-Galeana, A.; Brennan, F. Floating Offshore Vertical Axis Wind Turbines: Opportunities, Challenges and Way Forward. Energies 2021, 14, 8000. [Google Scholar] [CrossRef]
- Tamarit, F.; García, E.; Quiles, E.; Correcher, A. Model and Simulation of a Floating Hybrid Wind and Current Turbines Integrated Generator System, Part I: Kinematics and Dynamics. J. Mar. Sci. Eng. 2023, 11, 126. [Google Scholar] [CrossRef]
- Mathern, A.; Von der Haar, C.; Marx, S. Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends. Energies 2021, 14, 1995. [Google Scholar] [CrossRef]
- Ringvej Dahl, I.; Tveitan, B.W.; Cowan, E.C. The Case for Policy in Developing Offshore Wind: Lessons from Norway. Energies 2022, 15, 1569. [Google Scholar] [CrossRef]
- Flagship. Floating Offshore Wind Optimization for Commercialization. Brochure. 2020. Available online: https://www.flagshiproject.eu/wp-content/uploads/2021/03/003_Brochure_Cambios_Flagship.pdf (accessed on 18 February 2024).
- Ideol. N, A. IDEOL Winning Solutions for Offshore Wind. Brochure. Available online: https://www.bw-ideol.com/sites/default/files/pdf/ideol_-_press_kit.pdf (accessed on 18 February 2024).
- Brocklehurst, B.; Bradshaw, K. AFLOWT Environmental Impact Assessment Scoping Report; SEAI: Dublin, Ireland, 2022. [Google Scholar]
- Emerald Floating Wind. Emerald Project: Foreshore License Application for Site Investigation Work—Risk Assessment for Annex IV Species. 2021. Available online: https://assets.gov.ie/240131/d557cccf-1cf4-4658-97cd-04aada10a792.pdf (accessed on 18 February 2024).
- BOURBON. Bourbon Subsea Services Awarded by EOLMED an EPCI Contract for One of the First Floating Wind Pilot Farm in the French Mediterranean Sea. Press Release. 2022. Available online: https://www.bourbonoffshore.com/en/press-releases/bourbon-subsea-services-awarded-eolmed-epci-contract-one-first-floating-wind-pilot (accessed on 18 February 2024).
- IGEOTEST. Provence Grand Large & Mistral Floating Offshore Wind Project. Brochure. 2013. Available online: https://www.sbmoffshore.com/newsroom/news-events/sbm-offshore-announces-successful-installation-3-floating-wind-units (accessed on 18 February 2024).
- COPERNICUS. MET-Ocean Studies and Key Environmental Parameters for Floating Offshore Wind Technology. Brochure. 2018. Available online: https://www.copernicus.eu/en/use-cases/met-ocean-studies-and-key-environmental-parameters-floating-offshore-wind-technology (accessed on 18 February 2024).
- EOLFI. GROIX & Belle-Ile Floating Wind Turbines, Signature of a New Phase at NAVEXPO. Press Release. 2016. Available online: https://www.eolfi.com/ressources/_pdfs/1/3d0f273-183-CP-EOLFI-signature-CDC-MERID.pdf (accessed on 18 February 2024).
- Nair, R.J. Towing of Floating Wind Turbine Systems. Master’s Thesis, UIT University, Karachi, Pakistan, 2020. [Google Scholar]
- Voltà, L. Self-Alignment on Single Point Moored Downwind Floater—The PivotBuoy® Concept. In EERA DeepWind’2021 Programme, Proceedings of the 18th Deep Sea Offshore Wind R&D Digital Conference, Trondheim, Norway, 13–15 January 2021; Institute of Physics Publishing (IOP): Bristol, UK, 2021. [Google Scholar]
- Margheritini, L.; Rialland, A.; Sperstad, I.B. The Capitalisation Potential for Ports during the Development of Marine Renewable Energy. Beppo. 2015. Available online: https://www.sintef.no/globalassets/project/beppo/beppo_wp3_report_capitalisation_potential_for_ports_in_mre.pdf (accessed on 18 February 2024).
- RWE Offshore Wind GmbH. Demo SATH Has Achieved a Key Project Milestone with the Offshore Installation. Press Release. 2023. Available online: https://www.rwe.com/en/press/rwe-offshore-wind-gmbh/2023-08-11-demosath-has-achieved-a-key-project-milestone-with-the-offshore-installation/ (accessed on 18 February 2024).
- Díaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market Needs, Opportunities, and Barriers for the Floating Wind Industry. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- Codiga, D.A. Progression Hawaii Offshore Wind; Schlack ITO: Honolulu, HI, USA, 2018. [Google Scholar]
- CADEMO Research and Demonstration Goals; CADEMO Corporation: Palm Springs, CA, USA, 2021.
- Cabigan, M.K. Offshore Wind Development in an Integrated Energy Market in the North Sea: Defining Regional Energy Policies in an Integrated Market and Offshore Wind Infrastructure. Master’s Thesis, NTNU, Trondheim, Norway, 2022. [Google Scholar]
- Beiter, P.; Musial, W.; Duffy, P.; Cooperman, A.; Shields, M.; Heimiller, D.; Optis, M. The Cost of Floating Offshore Wind Energy in California Between 2019 and 2032; NREL/TP-5000-77384; National Renewable Energy Laboratory: Golden, CO, USA, 2020. [Google Scholar]
- Goto Floating Wind Farm LLC Consortium Begins Offshore Wind Turbine Assembly (Towards Realization of Floating Offshore Wind Power Generator); Press Release; INPEX Corporation: Tokyo, Japan, 2022.
- Belvasi, N.; Conan, B.; Schliffke, B.; Perret, L.; Desmond, C.; Murphy, J.; Aubrun, S. Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis. Energies 2022, 15, 7757. [Google Scholar] [CrossRef]
- Tan, L.; Ikoma, T.; Aida, Y.; Masuda, K. Mean Wave Drift Forces on a Barge-Type Floating Wind Turbine Platform with Moonpools. J. Mar. Sci. Eng. 2021, 9, 709. [Google Scholar] [CrossRef]
- Bensalah, A.; Barakat, G.; Amara, Y. Electrical Generators for Large Wind Turbine: Trends and Challenges. Energies 2022, 15, 6700. [Google Scholar] [CrossRef]
- Lee, J.; Xydis, G. Floating offshore wind project development in South Korea without government subsidies. Clean Technol. Environ. Policy 2023. [Google Scholar] [CrossRef]
- Ha, K.; Kim, J.B.; Yu, Y.; Seo, H. Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea. Energies 2021, 14, 6571. [Google Scholar] [CrossRef]
- Technip Energies. Technip Energies, Subsea 7 and SAMKANG M&T to Perform FEED for Gray Whale 3 Floating Offshore Wind Project in South Korea. 2022. Available online: https://investors.technipenergies.com/news-releases/news-release-details/technip-energies-subsea-7-and-samkang-mt-perform-feed-gray-whale (accessed on 18 February 2024).
- Shin, H. Introduction to the 1.2 GW Floating Offshore Wind Farm Project in the East Sea, Ulsan, Korea; University of Ulsan: Ulsan, Republic of Korea, 2020. [Google Scholar]
- Strivens, S.; Northridge, E.; Evans, H.; Harvey, M.; Camp, T.; Terry, N. Floating Wind Joint Industry Project (Phase III Summary Report); Carbon Trust: London, UK, 2021. [Google Scholar]
- EOLFI. N, A. EOLFI, A Member of the Shell Group. Brochure. Available online: https://www.shell.com/energy-and-innovation/new-energies/new-energies-media-releases/shell-agrees-to-acquire-eolfi.html (accessed on 18 February 2024).
- Pantusa, D.; Tomasicchio, G.R. Large-scale offshore wind production in the Mediterranean Sea. Cogent Eng. 2019, 6, 1661112. [Google Scholar] [CrossRef]
- Equinor. N.d. Hywind Tampen. Available online: https://www.equinor.com/energy/hywind-tampen (accessed on 9 June 2022).
- Equinor. N.d. Hywind Scotland. Available online: https://www.equinor.com/energy/hywind-scotland (accessed on 9 June 2022).
- Baltscheffsky, H. Join the Future. 2021. Available online: https://www.utilityeda.com/wp-content/uploads/Wed_Session-8-a_Hexicon-AB_Henrik-Baltscheffsky_Offshore-Wind-Power.pdf (accessed on 9 June 2022).
- IRENA. Innovation Landscape for a Renewable-Powered Future: Solutions to Integrate Variable Renewables; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2019; ISBN 978-92-9260-111-9. [Google Scholar]
- Tande, J.O.; Wagenaar, J.W.; Latour, M.I.; Aubrun, S.; Wingerde, A.V.; Eecen, P.; Andersson, M.; Barth, S.; McKeever, P.; Cutululis, N.A. Proposal for European Lighthouse Project: Floating Wind Energy. EU SETWind Project. 2022. Available online: https://blogg.sintef.no/wp-content/uploads/2022/03/Lighthouse_SetWind_I.pdf (accessed on 18 February 2024).
- Nielsen, F.G. Hywind—From Idea to the World’s First Wind Farm Based upon Floaters; University of Bergen: Bergen, Norway, 2017. [Google Scholar]
- Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P. Engineering Challenges for Floating Offshore Wind Turbines; NREL/CP-500-38776; National Renewable Energy Laboratory: Golden, CO, USA, 2007. [Google Scholar]
- Yildirir, V.; Rusu, E.; Onea, F. Wind Variation near the Black Sea Coastal Areas Reflected by the ERA5 Dataset. Inventions 2022, 7, 57. [Google Scholar] [CrossRef]
- Yildirir, V.; Rusu, E.; Onea, F. Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources. Sustainability 2022, 14, 4249. [Google Scholar] [CrossRef]
- Rickert, C.; Thevar Parambil, A.M.; Leimeister, M. Conceptual Study and Development of an Autonomously Operating, Sailing Renewable Energy Conversion System. Energies 2022, 15, 4434. [Google Scholar] [CrossRef]
- Kurniawati, I.; Beatriz, B.; Varghese, R.; Kostadinović, D.; Sokol, I.; Hemida, H.; Alevras, P.; Baniotopoulos, C. Conceptual Design of a Floating Modular Energy Island for Energy Independency: A Case Study in Crete. Energies 2023, 16, 5921. [Google Scholar] [CrossRef]
- Skobiej, B.; Niemi, A. Validation of copula-based weather generator for maintenance model of offshore wind farm. WMU J. Marit. Aff. 2022, 21, 73–87. [Google Scholar] [CrossRef]
- Xu, X.; Xing, Y.; Gaidai, O.; Wang, K.; Sandipkumar Patel, K.; Dou, P.; Zhang, Z. A novel multi-dimensional reliability approach for floating wind turbines under power production conditions. Front. Mar. Sci. 2022, 9, 970081. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Kaushik, D.; Cutululis, N.A.; Molina-García, A. Offshore Wind Power Integration into Future Power Systems: Overview and Trends. J. Mar. Sci. Eng. 2019, 7, 399. [Google Scholar] [CrossRef]
- Agarwal, R. Economic Analysis of Renewable Power-to-Gas in Norway. Sustainability 2022, 14, 16882. [Google Scholar] [CrossRef]
- Connolly, P.; Crawford, C. Comparison of optimal power production and operation of unmoored floating offshore wind turbines and energy ships. Wind. Energy Sci. 2023, 8, 725–746. [Google Scholar] [CrossRef]
- Power to X—Transforming Renewable Electricity into Green Products and Services; Concept Paper; Venture Taranaki: New Plymouth, New Zealand, 2021.
- North Sea Wind Power Hub. Integration of Offshore Wind. Discussion Paper #1. 2021. Available online: https://northseawindpowerhub.eu/sites/northseawindpowerhub.eu/files/media/document/NSWPH%20Integration%20of%20offshore%20wind.pdf (accessed on 18 February 2024).
- Ibrahim, O.S.; Singlitico, A.; Proskovics, R.; McDonagh, S.; Desmond, C.; Murphy, J.D. Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies. Renew. Sustain. Energy Rev. 2022, 160, 112310. [Google Scholar] [CrossRef]
- Girleanu, A.; Onea, F.; Rusu, E. The efficiency and coastal protection provided by a floating wind farm operating in the Romanian nearshore. Energy Rep. 2021, 7, 13–18. [Google Scholar] [CrossRef]
- Raileanu, A.B.; Onea, F.; Rusu, E. Implementation of Offshore Wind Turbines to Reduce Air Pollution in Coastal Areas—Case Study Constanta Harbor in the Black Sea. J. Mar. Sci. Eng. 2020, 8, 550. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. An Assessment of Wind Energy Potential in the Caspian Sea. Energies 2019, 12, 2525. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E. Efficiency assessments for some state-of-the-art wind turbines in the coastal environments of the Black and the Caspian seas. Energy Explor. Exploit. 2016, 34, 217–234. [Google Scholar] [CrossRef]
- Raileanu, A.; Onea, F.; Rusu, E. Assessment of the wind energy potential in the coastal environment of two enclosed seas. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015. [Google Scholar] [CrossRef]
- Onea, F.; Raileanu, A.; Rusu, E. Evaluation of the Wind Energy Potential in the Coastal Environment of Two Enclosed Seas. Adv. Meteorol. 2015, 2015, 808617. [Google Scholar] [CrossRef]
Floating Wind Turbine Types | Advantages | Disadvantages |
---|---|---|
Spar-buoy | Most simple manufacturing, convenient stability | Relatively lower water depth capacity, compared to TLP |
Semi-submersible (one turbine) | Most widely used | More complex and difficult manufacturing, less stable, more expensive |
Semi-submersible (multi-turbine) | Reducing the structural materials and corresponding operation and maintenance costs | Relatively more faults, due to the interaction between the loads coming from different turbines on the same support structure, which influences each floater’s operation and stability |
Barge | Can be made of concrete (feasible for countries with a lack of steel material) | More complex and difficult to manufacture, less stable, more expensive |
TLP | Most stable, highest water depth capacity | Most expensive, difficult to install |
Type | Concept | Designer | Hull Material |
---|---|---|---|
Spar-buoy | Hywind | Equinor | Steel or Concrete |
Toda Hybrid Spar | Toda | Steel and Concrete Hybrid | |
Fukushima FORWARD Advanced Spar | JMU | Steel | |
SeaTwirl | SeaTwirl | Steel | |
Stiesdal TetraSpar | Stiesdal | Steel | |
Semi-submersible | WindFloat | Principle Power | Steel |
Fukushima FORWARD compact semi-submersible | MES | Steel | |
Fukushima FORWARD V-shape semi-submersible | MHI | Steel | |
VolturnUS | University of Maine | Concrete | |
Sea Reed | Naval Energies | Steel, Concrete or Hybrid | |
Cobra Semi-Spar | Cobra | Concrete | |
OO-Star | Iberdrola | Concrete | |
Hexafloat | Saipem | Steel | |
Eolink | Eolink | Steel | |
SCD nezzy | SCD Technology | Concrete | |
Nautilus | NAUTILUS Floating Solutions | Steel | |
Tri-Floater | GustoMSC | Steel | |
TrussFloat | DOLFINES | Steel | |
Barge | Ideol Damping Pool Barge | Ideol | Concrete or Steel |
Saitec SATH (Swinging Around Twin Hull) | Saitec | Concrete | |
Tension leg platform | SBM TLP | SBM Offshore | Steel |
PivotBuoy TLP | X1 Wind | Steel | |
Gicon TLP | Gicon | Concrete | |
Pelastar TLP | Glosten | Steel | |
TLPWind TLP | Iberdrola | Steel | |
Multi-turbine platform | Hexicon multi-turbine semi-submersible | Hexicon | Steel |
W2Power | EnerOcean | Steel | |
Floating Power Plant | Floating Power Plant | Steel |
Continent | Country, Location | Year, Turbine—Power | Project Name, Designer |
---|---|---|---|
North America | U.S., Maine | 2013, Renewegy 20 kW | VolturnUS 1:8, University of Maine |
U.S.—Oregon, WindFloat semi-submersible | 2013, 5 × 6 MW | WindFloat Pacific (WFP), Principle Power | |
Asia | Japan, Goto | 2013, Hitachi 2 MW downwind | Kabashima, Toda |
Japan, Fukue | 2015, Hitachi 2 MW downwind | Sakiyama, Toda | |
Japan, Fukushima | 2013, 66 kV—25 MVA Floating Substation | Fukushima FORWARD Phase 1, Fukushima Offshore Wind Consortium | |
Japan, Fukushima | 2013, Hitachi 2 MW downwind | Fukushima FORWARD Phase 1, Fukushima Offshore Wind Consortium | |
Japan, Fukushima | 2015, MHI 7 MW | Fukushima FORWARD Phase 2, Fukushima Offshore Wind Consortium | |
Japan, Fukushima | 2016, Hitachi 5 MW downwind | Fukushima FORWARD Phase 2, Fukushima Offshore Wind Consortium | |
Japan, Kitakyushu | 2019, Aerodyn SCD 3 MW—2 bladed | Hibiki, Ideol | |
Europe | Denmark, Lolland | 2008, 33 kW | Poseidon 37 Demonstrator [33], Floating Power Plant |
Norway, Karmøy | 2009, Siemens 2.3 MW | Hywind Demo, Equinor | |
Portugal, Aguçadoura | 2011, Vestas 2 MW | WindFloat 1 (WF1), Principle Power | |
Portugal, Viana do Castelo | 2020, MHI Vestas 3 × 8.4 MW | WindFloat Atlantic (WFA), PrinciplePower | |
Sweden, Lysekil | 2015, 30 kW Vertical Axis Wind Turbine | SeaTwirl S1, SeaTwirl | |
UK, Peterhead | 2017, Siemens 5 × 6 MW | Hywind Scotland, Equinor | |
UK, Dounreay | 2017, N/A 2 × 5 MW | Hexicon Dounreay Trì project [34], Hexicon | |
UK, Kincardineshire | 2020, MHI Vestas 2 MW (former WF1) & MHI Vestas 5 × 9.5 MW | Kincardine, Principle Power | |
Spain, Gran Canaria | 2019, 2 × 100 kW twin-rotor | W2Power 1:6 Scale, EnerOcean | |
Spain, Santander | 2020, Aeolos 30 kW | BlueSATH, Saitec | |
France, Le Croisic | 2018, Vestas 2 MW | Floatgen, Ideol | |
Germany, Baltic Sea | 2017, Siemens 2.3 MW | Gicon SOF [35], GICON |
Continent | Country—Location, Floating Substructure Design—Type | Year, Turbine—Power | Project Name, Designer |
---|---|---|---|
Europe | Norway—Karmøy, Stiesdal TetraSpar—Spar | 2020, Siemens Gamesa 3.6 MW | TetraSpar Demo [45], Stiesdal |
Norway—Haugaland, SeaTwirl Spar | 2021, 1 MW Vertical Axis Wind Turbine | SeaTwirl S2 [46], SeaTwirl | |
Norway—Snorre & Gullfaks offshore fields, Hywind Spar | 2022, Siemens Gamesa 11 × 8 MW | Hywind Tampen, Equinor [47] | |
Norway—Karmøy, OO-Star semi-submersible | 2022, 10 MW | Flagship Demo, Iberdrola [48] | |
Offshore Norway | 2023, N/A | NOAKA, N/A | |
Offshore UK, Ideol damping pool—barge | 2021, 100 MW | Atlantis Ideol [49], Ideol | |
Offshore UK, TLPWind TLP | N/A, 5 MW | TLPWind UK, Iberdrola | |
Ireland—Offshore Irish west coast, Hexafloat -semi-submersible | 2022, 6 MW | AFLOWT [50], Saipem | |
Ireland—Offshore Kinsale, WindFloat semi-submersible | N/A, 100 MW | Emerald [51], Principle Power | |
France—Gruissan, Ideol Damping Pool, barge | 2021, Senvion 4 × 6.2 MW | EolMed [52], Ideol | |
France—Offshore Napoleon Beach, SBM TLP | 2021, Siemens Gamesa 3 × 8.4 MW | Provence Grand Large (PGL) [53], SBM Offshore | |
France—Offshore Leucate-Le Barcarès, WindFloat semi-submersible | 2022, MHI Vestas 3 × 10 MW | Golfe du Lion (EFGL) [54], Principle Power | |
France—Offshore Brittany, Sea Reed semi-submersible | 2022, MHI Vestas 3 × 9.5 MW | Groix & Belle-Ile [55], Naval Energies | |
France—Offshore Le Croisic, Eolink semi-submersible | N/A, 5 MW | Eolink Demonstrator [56], Eolink | |
Spain—Offshore Canary Island, PivotBuoy TLP | 2020, Vestas 200 kW | PivotBuoy 1:3 Scale [57], X1 Wind | |
Spain—Offshore Canary Islands, Cobra semi-spar | 2020, 5 × 5 MW | FLOCAN5 [58], Cobra | |
Spain—Offshore Basque, Saitec SATH | 2021, 2 MW | DemoSATH [59], Saitec | |
Spain—Offshore Gran Canaria, N/A | N/A, 4 × 12.5 MW | Parque Eólico Gofio, Greenalia | |
Spain—Basque, N/A | N/A, 26 MW | Balea, N/A | |
Spain—Offshore Gran Canaria, N/A | N/A | WunderHexicon, Hexicon | |
North America | U.S.—Monhegan Island, VolturnUS semi-submersible | 2023, 12 MW | New England Aqua Ventus I [11], University of Maine |
U.S.—California, WindFloat semi-submersible | 2024, 100–150 MW | Red Wood Coast [60], Principle Power | |
U.S.—Hawaii, WindFloat semi-submersible | 2025, 400 MW | Progression South [61], Principle Power | |
U.S.—California, SBM TLP/Saitec SATH | 2025, 4 × 12 MW | CADEMO, SBM Offshore/ SAITEC [62] | |
U.S.—California, N/A | 2026, 1 GW | Castle Wind, N/A | |
U.S.—Hawaii, WindFloat semi-submersible | 2027, 400 MW | AWH Oahu Northwest, Principle Power | |
U.S.—Hawaii, WindFloat semi-submersible | 2027, 400 MW | AWH Oahu South [63], Principle Power | |
U.S.—California, N/A | N/A | Diablo Canyon [64], N/A | |
U.S.—Massachusetts, N/A | N/A, 10 + MW | Mayflower Wind, Atkins | |
Asia | Japan—Goto, Toda Hybrid spar | 2021, 22 MW | Goto City [65], Toda |
Offshore Japan, Ideol Damping Pool, barge | 2023, N/A | Acacia [66,67], Ideol | |
Offshore Japan, SCD NEZZY Semi-Submersible | N/A, Aerodyn SCD 6 MW— 2-bladed | Nezzy Demonstrator [68], SCD Technology | |
Korea—Ulsan, Hexicon multi-turbine semi- submersible | 2022, 200 MW | Donghae TwinWind, Hexicon | |
Korea—Ulsan, Semi- submersible | 2020, 750 kW | Ulsan 750kW Floating Demonstrator, University of Ulsan | |
Korea—Ulsan, N/A | 2020, 5 MW | Ulsan Prototype [69,70], N/A | |
Korea—Ulsan, N/A | 2023, 500 MW | Gray Whale [71], N/A | |
Korea—Ulsan, Hywind Spar | 2024, 200 MW | KNOC (Donghae 1) [72,73], Equinor | |
Korea—Ulsan, WindFloat semi-submersible | N/A, 500 MW | KFWind, Principle Power | |
Korea—Ulsan, N/A | N/A, 200 MW | White Heron, N/A |
Year | Project, Location, Distance to Shore | Turbine & Power, Floating Substructure Design & Type, Designer | Water Depth, Site Condition, Estimated Cost |
---|---|---|---|
2009 | HYWIND DEMO (ZEFYROS), Offshore Karmøy Norway, 10 km | Siemens 2.3 MW, Hywind Spar, Equinor | 220 m, wind speed 40 m/s & max wave height 19 m, US $71 million |
2011 | WINDFLOAT 1 (WF1), Offshore Aguçadoura Portugal, 5 km | Vestas 2 MW, WindFloat semi-submersible, Principle Power | 49 m, wind speed 31 m/s & max wave height 17 m, US $25 million |
2013 | VOLTURNUS 1:8, Offshore Castine Maine US, 330 m | Renewegy 20 kW, VolturnUS, semi-submersible, University of Maine | 27.4 m, 50-year wind speed 14.1 m/s & 50-year significant wave height 1.3 m, US $12 million |
SAKIYAMA, Offshore Sakiyama Fukue Island Japan, 5 km | Hitachi 2 MW downwind, Haenkaze -Toda Hybrid spar, Toda | 100 m, 50-year wind speed 45.8 m/s & 50-year significant wave height 12.1 m, N/A | |
FUKUSHIMA FORWARD PROJECT phase I, Offshore Fukushima Japan, 23 km | 66 kV—25 MVA Floating Substation, Fukushima Kizuna—Advanced Spar, Japan Marine United Corporation (JMU) | 120 m, 50-year wind speed 48.3 m/s & 50-year significant wave height 11.71 m, US $157 million for all the phases of the project | |
FUKUSHIMA FORWARD PROJECT phase I, Offshore Fukushima Japan, 23 km | Hitachi 2 MW downwind, Fukushima Mira—compact semi-submersible, Mitsui Engineering & Shipbuilding Co., Ltd. (MES) | 122–123 m, 50-year wind speed 48.3 m/s & 50-year significant wave height 11.71 m, US $157 million for all the phases of the project | |
2015 | FUKUSHIMA FORWARD PROJECT, phase II, Offshore Fukushima Japan, 23 km | MHI 7 MW, Fukushima Shimpuu—V-shape Semi-Submersible, Mitsubishi Heavy Industries, Ltd. (MHI) | 125 m, 50-year wind speed 48.3 m/s & 50-year significant wave height 11.71 m, US $157 million for all the phases of the project |
SEATWIRL S1, Offshore Lysekil Sweden, N/A | 30 kW Vertical Axis Wind Turbine, SeaTwirl Spar, SeaTwirl | 35 m, wind speed 35 m/s, N/A | |
2016 | FUKUSHIMA FORWARD PROJECT, phase II, Offshore Fukushima Japan, 23 km | Hitachi 5 MW downwind, Fukushima Hamakaze— Advanced Spar, Japan Marine United Corporation (JMU) | 110–120 m, 50-year wind peed 48.3 m/s & 50-year significant wave height 11.71 m, US $157 million for all the phases of the project |
2017 | HYWIND SCOTLAND, Offshore Peterhead Scotland UK, 25 km | Siemens 5 × 6 MW, Hywind Spar, Equinor | 95–120 m, average wind speed 10 m/s & average wave height 1.8 m, US $210 million |
2018 | FLOATGEN, Offshore Le Croisic France, 20 km | Vestas 2 MW, Ideol Damping Pool-barge, Ideol | 33 m, wind speed 24.2 m/s & significant wave height 5.5 m, US $22.5 million |
2019 | HIBIKI, Offshore Kitakyushu Japan, 15 km | Aerodyn SCD 3 MW—2 bladed, Ideol Damping Pool-barge, Ideol | 55 m, typhoon-prone area, N/A |
W2POWER 1:6 SCALE, Offshore Gran Canaria Spain, N/A | 2 × 100 kW twin-rotor, EnerOcean W2Power semi-submersible, EnerOcean | N/A | |
2020 | WINDFLOAT ATLANTIC (WFA), Offshore Viana do Castelo Portugal, 20 km | MHI Vestas 3 × 8.4 MW, WindFloat semi-submersible, Principle Power | 85–100 m, N/A, US $134 million |
KINCARDINE, Offshore Kincardineshire Scotland UK, 15 km | MHI Vestas 2 MW (former WF1)—MHI Vestas 5 × 9.5 MW, WindFloat semi-submersible, Principle Power | 60–80 m, UK North Sea off the coast of Scotland, US $445 million | |
BLUESATH, Offshore Santander Spain, 800 m | Aeolos 30 kW, Saitec SATH 1:6, Saitec | N/A, Abra del Sardinero, US $2.2 million | |
TETRASPAR DEMO, Offshore Karmøy Norway, 10 km | Siemens Gamesa 3.6 MW, Stiesdal TetraSpar—Spar, Stiesdal | 220 m, Near Zefyros (former Hywind Demo), US $20.5 million | |
2021 | DEMOSATH, Offshore Basque Spain, 3.2 km | 2 MW, Saitec SATH, Saitec | 85 m, wind speed 12 m/s & significant wave height 2.8 m, $17.3 million |
EOLMED, Offshore Gruissan Mediterranean Sea France, 15 km | Senvion 4 × 6.2 MW, Ideol Damping Pool—barge, Ideol | 55 m, Mediterranean Sea, US $236.2 million | |
PROVENCE GRAND LARGE (PGL), Offshore Napoleon beach Mediterranean Sea France, 17 km | Siemens Gamesa 3 × 8.4 MW, SBM TLP, SBM Offshore | 100 m, Mediterranean Sea, US $225 million | |
2022 | HYWIND TAMPEN, Snorre & Gullfaks offshore fields Offshore Norway, 140 km | Siemens Gamesa 11 × 8 MW, Hywind Spar, Equinor | 260–300 m, mean significant wave height 2.8 m, US $545 million |
GOLFE DU LION (EFGL), Offshore Leucate-Le Barcarès Mediterranean Sea France, 16 km | MHI Vestas 3 × 10 MW, WindFloat semi-submersible, Principle Power | 65–80 m, Mediterranean Sea, US $225 million | |
GROIX & BELLE-ILE, Offshore Brittany France, 22 km | MHI Vestas 3 × 9.5 MW, Sea Reed semi-submersible, Naval Energies | 60 m, Atlantic Ocean off the coast of France, US $254 million | |
DONGHAE TWINWIND, Offshore Ulsan Korea, 62 km | 200 MW, Hexicon multi-turbine semi-submersible, Hexicon | N/A | |
2023 | NEW ENGLAND AQUA VENTUS I, Offshore Monhegan Island in the Gulf of Maine US, 4.8 km | 12 MW, VolturnUS- semi-submersible, University of Maine | 100 m, 50-year wind speed of 40 m/s & 50-year significant wave height 10.2 m, US $100 million |
2024 | REDWOOD COAST, Offshore Humboldt County California US, 40 km | 100–150 MW, WindFloat semi-submersible, Principle Power | 600 m–1 km, average annual wind speed 9–10 m/s, N/A |
2025 | CADEMO, Offshore Vandenberg California US, 4.8 km | 4 × 12 MW, SBM TLP/Saitec SATH, SBM Offshore/Saitec | 85–96 m, average wind speed 8.5 m/s, N/A |
2026 | CASTLE WIND, Offshore Morro Bay California US, 48 km | 1 GW, N/A, N/A | 813 m–1.1 km, average wind speed 8.5 m/s, N/A |
Floating Wind Turbine Types | Number of Corresponding Concepts |
---|---|
Spar-buoy | 5 |
Semi-submersible | 13 |
Barge | 2 |
TLP | 5 |
Multi-turbine | 3 |
Total | 28 |
Floating Wind Manufacturing Material | Number of Corresponding Concepts |
---|---|
Steel | 18 |
Concrete | 6 |
Steel and/or concrete | 4 |
Total | 28 |
Floating Wind Types | Number of Corresponding Concepts | Steel | Concrete | Steel and/or Concrete |
---|---|---|---|---|
Spar-buoy | 5 | 3 | - | 2 |
Semi-submersible | 13 | 8 | 4 | 1 |
Barge | 2 | - | 1 | 1 |
TLP | 5 | 4 | 1 | - |
Multi-turbine | 3 | 3 | - | - |
Total | 28 | 18 | 6 | 4 |
Continents | Total Installed Floating Wind Capacity | Corresponding Number of Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|
Europe | 123.5 MW | 12 | 8 | UK, Portugal, Norway, Germany, France, Spain, Denmark, Sweden |
North America | 30.2 MW | 2 | 1 | US |
Asia | 21 MW | 4 | 1 | Japan |
Total | 174.7 MW | 18 | 10 | The UK, Portugal, Norway, Germany, France, Spain Denmark, Sweden, The US and Japan |
Continents | Total Planned Floating Wind Power Capacity | Corresponding Number of Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|
Europe | 525.1 MW | 17 | 5 | France, Ireland, UK, Spain, Norway |
North America | 2.42 GW | 8 | 1 | US |
Asia | 1.634 GW | 9 | 2 | Korea, Japan |
Total | 4.5791 GW | 34 | 8 | France, Ireland, the UK, Spain, Norway, the US, Korea and Japan |
Continents | Corresponding Project Costs | Corresponding Number of Installed Projects | Corresponding Number of Planned Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|---|
Europe | 2.1127 billion dollars | 7 | 7 | 5 | France, UK, Norway, Portugal, Spain |
North America | 112 million dollars | 1 | 1 | 1 | US |
Asia | - | - | - | - | - |
Total | 2.2247 billion dollars | 8 | 8 | 6 | France, the UK, Norway, Portugal, Spain and the US |
Continents | Corresponding Project Wind Speed | Corresponding Number of Installed Projects | Corresponding Number of Planned Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|---|
Europe | 10–40 m/s | 5 | 1 | 6 | Norway, Sweden, Portugal, France, Spain, UK |
North America | 8.5–40 m/s | 1 | 4 | 1 | US |
Asia | 45–48 m/s | 2 | - | 1 | Japan |
Total | 8.5–48 m/s | 8 | 5 | 8 | Norway, Sweden, Portugal, France, Spain, the UK, the US and Japan |
Continents | Corresponding Projects’ Water Depth | Corresponding Number of Installed Projects | Corresponding Number of Planned Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|---|
Europe | 33–300 m | 8 | 6 | 6 | Norway, UK, France, Portugal, Spain, Sweden |
North America | 27.4 m–1 km | 1 | 3 | 1 | US |
Asia | 55–125 m | 3 | - | 1 | Japan |
Total | 27.4 m–1 km | 12 | 9 | 8 | Norway, the UK, France, Portugal, Spain, Sweden, the US and Japan |
Continents | Corresponding Projects’ Distance to Shore | Corresponding Number of Installed Projects | Corresponding Number of Planned Projects | Corresponding Number of Countries | Corresponding Countries |
---|---|---|---|---|---|
Europe | 800 m–140 km | 7 | 7 | 5 | Norway, UK, France, Portugal, Spain |
North America | 330 m–48 km | 1 | 4 | 1 | US |
Asia | 5–62 km | 3 | 1 | 2 | Korea, Japan |
Total | 300 m–140 km | 11 | 12 | 8 | Norway, the UK, France, Portugal, Spain, the US, Korea and Japan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maktabi, M.; Rusu, E. A Review of Perspectives on Developing Floating Wind Farms. Inventions 2024, 9, 24. https://doi.org/10.3390/inventions9020024
Maktabi M, Rusu E. A Review of Perspectives on Developing Floating Wind Farms. Inventions. 2024; 9(2):24. https://doi.org/10.3390/inventions9020024
Chicago/Turabian StyleMaktabi, Mohamed, and Eugen Rusu. 2024. "A Review of Perspectives on Developing Floating Wind Farms" Inventions 9, no. 2: 24. https://doi.org/10.3390/inventions9020024
APA StyleMaktabi, M., & Rusu, E. (2024). A Review of Perspectives on Developing Floating Wind Farms. Inventions, 9(2), 24. https://doi.org/10.3390/inventions9020024