Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compression Tests
2.2. 3D Segmentation and Material Model
2.3. Finite Element Model
3. Results and Discussion
3.1. Compression Tests
3.2. Numerical Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Quiroz-Munoz, M.; Izadmehr, S.; Arumugam, D.; Wong, B.; Kirschenbaum, A.; Levine, A.C. Mechanisms of Osteoblastic Bone Metastasis in Prostate Cancer: Role of Prostatic Acid Phosphatase. J. Endocr. Soc. 2019, 3, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.R.; Santos, A.R., Jr.; Petinari, L.; Goissis, G.; Nonaka, K.O.; Wang, C.C.; Genari, S.C. Characterization of the physical and mechanical properties of femoral bone defects filled with polyanionic collagen scaffolds in ovariectomized rats. Mater. Res. 2010, 13, 239–244. [Google Scholar] [CrossRef]
- Kurutz, M.; Oroszvry, L. Finite Element Modeling and Simulation of Healthy and Degenerated Human Lumbar Spine. In Finite Element Analysis—From Biomedical Applications to Industrial Developments; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Libonati, F.; Ferrario, D.; Rinaudo, L.; Messina, C.; Ulivieri, F.M.; Cesana, B.M.; Strano, M.; Vergani, L. Determinants of bone damage: An ex-vivo study on porcine vertebrae. PLoS ONE 2018, 13, e0202210. [Google Scholar] [CrossRef] [PubMed]
- Alini, M.; Eisenstein, S.M.; Ito, K.; Little, C.; Kettler, A.A.; Masuda, K.; Melrose, J.; Ralphs, J.; Stokes, I.; Wilke, H.J. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 2007, 17, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Busscher, I.; Ploegmakers, J.J.W.; Verkerke, G.J.; Veldhuizen, A.G. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 2010, 19, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cañizo, R.G.; Fuerte-Hernández, A.; Urriolagoitia-Sosa, G.; Merchán-Cruz, E.A.; Niño-Suárez, P.A.; Gónzalez-Rebatu, A. Determination of the mechanical properties of anterior column units and functional spinal units of the L3-L4 lumbar porcine segment. DYNA 2014, 81, 115. [Google Scholar] [CrossRef]
- Coombs, D.; Rao, M.; Bushelow, M.; Deacy, J. Simulation of lumbar spine biomechanics using Abaqus. In Proceedings of the 2011 SIMULIA Customer Conference, Barcelona, Spain, 17–19 May 2011; pp. 1–14. [Google Scholar]
- Borah, B.; Dufresne, T.E.; Cockman, M.D.; Gross, G.J.; Sod, E.W.; Myers, W.R.; Combs, K.S.; Higgins, R.E.; Pierce, S.A.; Stevens, M.L. Evaluation of Changes in Trabecular Bone Architecture and Mechanical Properties of Minipig Vertebrae by Three-Dimensional Magnetic Resonance Microimaging and Finite Element Modeling. J. Bone Miner. Res. 2000, 15, 1786–1797. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.-R.; Xu, H.-Z.; Wang, Y.-L.; Zhu, Q.-A.; Mao, F.-M.; Lin, Y.; Wang, X.-Y. Comparison of Cervical Spine Anatomy in Calves, Pigs and Humans. PLoS ONE 2016, 11, e0148610. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, G.; Ji, C.; Jiang, J.; Wang, J.; Wang, J. Characterization of the mechanical properties for cranial bones of 8-week-old piglets: The effect of strain rate and region. Biomech. Model. Mechanobiol. 2019, 18, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Song, G.; Ji, C.; Han, X. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae. Comput. Methods Programs Biomed. 2019, 188, 105279. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Gustavo, R.; Urriolagoitia, G. Caracterización de Vértebras Porcinas Para su uso en Aplicaciones Biome-Cánicas; SEPI ESIME UA IPN: Azcapotzalco, México, 2010. [Google Scholar]
- Dahmen, T.; Roland, M.; Tjardes, T.; Bouillon, B.; Slusallek, P.; Diebels, S. An automated workflow for the biomechanical simulation of a tibia with implant using computed tomography and the finite element method. Comput. Math. Appl. 2015, 70, 903–916. [Google Scholar] [CrossRef]
- An, P.; Liu, J.; Yu, M.; Wang, J.; Wang, Z. Predicting mixed venous oxygen saturation (SvO2) impairment in COPD patients using clinical-CT radiomics data: A preliminary study. Technol. Health Care 2023, preprint. [Google Scholar] [CrossRef]
- Le, V.H.; Minh, T.N.T.; Kha, Q.H.; Le, N.Q.K. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Med Biol. Eng. Comput. 2023, 61, 2699–2712. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.A.G. Biomechanical Study of Intervertebral Disc Degeneration. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2013. [Google Scholar]
- Yang, T.; Zhang, C.Q.; Liu, Q.; Li, K. The rule of strain in different stratification of the intervertebral disc under physio-logic loading. Biomed. Res. 2017, 28, 987–994. [Google Scholar]
- Argüello, D.; Acevedo, H.G.S.; A González-Estrada, O. Comparison of segmentation tools for structural analysis of bone tissues by finite elements. J. Phys. Conf. Ser. 2019, 1386, 12113. [Google Scholar] [CrossRef]
- Hui, Y.; Wu, J.-S.; Yu, B.; Zhang, C.; Du, J. Construction of Biological Model of Human Lumbar and Analysis of its Mechanical Properties. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1857002. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Teo, J.C.; Si-Hoe, K.M.; Keh, J.E.; Teoh, S.H. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin. Biomech. 2006, 21, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Parra, S.A.A.; Acevedo, H.G.S.; Estrada, O.A.G. Evaluation of damage to the lumbar spine vertebrae L5 by finite element analysis. Respuestas 2019, 24, 50–55. [Google Scholar] [CrossRef]
- Rivero-Méndez, S.D.; Ordoñez-Martínez, J.D.; Díaz, C.S.C.; Mantilla-Hernández, H.D.; González-Estrada, O.A. Caracterización de propiedades elásticas en una muestra de roca tipo arenisca mediante elementos finitos. Rev. UIS Ing. 2022, 21, 211–222. [Google Scholar] [CrossRef]
- Leon-Becerra, J.; González-Estrada, O.A.; Sánchez-Acevedo, H. Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study. Polymers 2022, 14, 3546. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.A.; Puentes, D.A.; Quintero, I.D.; González-Estrada, O.A.; Villegas, D.F. Image-Based Numerical Analysis for Isolated Type II SLAP Lesions in Shoulder Abduction and External Rotation. Diagnostics 2023, 13, 1819. [Google Scholar] [CrossRef] [PubMed]
- Campos-López, J.P.; Fuerte-Hernández, A.; Hernández-Gómez, L.H.; Martínez-García, A.; Beltrán-Fernández, J.A.; Urriolagoitia-Calderón, G. Determination of the Mechanical Properties of Lumbar Porcine Vertebrae with 2D Digital Image Correlation. J. Appl. Biomater. Funct. Mater. 2015, 13, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.T.; Mercuri, E.G.F.; Hecke, M.B. FE bone structural analysis with CT mapping of inhomogeneous material properties. In Proceedings of the ECCOMAS Congress 2016—7th European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016; pp. 6574–6587. [Google Scholar] [CrossRef]
- Garcia-Andrés, X.; Nadal, E.; Arana, E.; Gandía-Vañó, B.; Ródenas, J.J. Methodology for the assessment of the risk of failure of metastatic vertebrae through ROM-based patient-specific simulations. Comput. Struct. 2024, 296, 107298. [Google Scholar] [CrossRef]
- Atanacio, O.; Avalos, N.; Barba, M.S.; Agón Rendón, M.; García-gonzález, A.; Jiménez, J.M.; Fuentes, R.Q. Caracterización de esfuerzos mecánicos en vértebras toracolumbares porcinas instrumentadas con tornillos transpendiculares. In Memorias del XXXVII Congreso Nacional de Ingeniería Biomédica; Sociedad Mexicana de Ingeniería Biomédica A.C.: Puerto Vallarta, Mexico, 2014; pp. 142–145. [Google Scholar]
- Azarnoosh, M.; Stoffel, M.; Markert, B. A study of the damage behaviour of porcine intervertebral discs in a bioreactor environment. J. Mech. Behav. Biomed. Mater. 2017, 77, 727–733. [Google Scholar] [CrossRef]
- Corredor, E.; González-Estrada, O.A.; Ospina-Ospina, R. Deposición de láser pulsado de hidroxiapatita en Ti-6Al-4V producido por manufactura aditiva. Rev. UIS Ing. 2022, 21, 107–122. [Google Scholar] [CrossRef]
- Agarwalla, S.V.; Solomon, A.P.; Neelakantan, P.; Rosa, V. Novel materials and therapeutic strategies against the infection of implants. Emergent Mater. 2020, 3, 545–557. [Google Scholar] [CrossRef]
- Reboledo-Grau, D.; Martínez-Bordes, G. Metodología para el diseño computacional de andamios a ser utilizados en reparación ósea. Rev. UIS Ing. 2020, 19, 301–314. [Google Scholar] [CrossRef]
- Rodríguez, M.M.; González-Estrada, O.A.; Villegas-Bermúdez, D.F. Finite Element Analysis of Patient-Specific Cranial Implants under Different Design Parameters for Material Selection. Designs 2024, 8, 31. [Google Scholar] [CrossRef]
- Cheong, V.S.; Fromme, P.; Mumith, A.; Coathup, M.J.; Blunn, G.W. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J. Mech. Behav. Biomed. Mater. 2018, 87, 230–239. [Google Scholar] [CrossRef] [PubMed]
- MTS Systems Corporation. MTS Bionix® Tabletop Test Systems; MTS: Eden Prairie, MN, USA, 2023. [Google Scholar]
- Taddei, F.; Schileo, E.; Helgason, B.; Cristofolini, L.; Viceconti, M. The material mapping strategy influences the accuracy of CT-based finite element models of bones: An evaluation against experimental measurements. Med. Eng. Phys. 2007, 29, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Jasiuk, I. Multi-scale characterization of swine femoral cortical bone. J. Biomech. 2011, 44, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Causa, F.; Manto, L.; Borzacchiello, A.; De Santis, R.; Netti, P.A.; Ambrosio, L.; Nicolais, L. Spatial and structural dependence of mechanical properties of porcine intervertebral disc. J. Mater. Sci. Mater. Med. 2002, 13, 1277–1280. [Google Scholar] [CrossRef] [PubMed]
- Dath, R.; Ebinesan, A.; Porter, K.; Miles, A. Anatomical measurements of porcine lumbar vertebrae. Clin. Biomech. 2007, 22, 607–613. [Google Scholar] [CrossRef] [PubMed]
Vertebra | Height (mm) | Width (mm) | Depth (mm) | Mass (g) |
---|---|---|---|---|
L3 | 30.4 | 35.5 | 20.3 | 33.8 |
L4 | 30.5 | 35.5 | 21.0 | 35.6 |
L5 | 30.7 | 35.9 | 21.7 | 35.6 |
L6 | 33.4 | 35.9 | 21.9 | 35.0 |
SD | 1.44 | 0.23 | 0.73 | 0.76 |
Nodes | Elements | Total Displacement (mm) | Time (Min) | % Error |
---|---|---|---|---|
11,258 | 7623 | 5.3356 | 33 | 0.37 |
26,089 | 16,896 | 5.3154 | 55 | 0.09 |
64,548 | 36,485 | 5.3202 | 85 | - |
Vertebra | S1 (mm) | S2 (mm) | S3 (mm) | Average (mm) |
---|---|---|---|---|
L3 | 5.18 | 5.52 | 4.86 | 5.19 |
L4 | 5.45 | 4.75 | 5.92 | 5.37 |
L5 | 4.64 | 5.17 | 4.97 | 4.92 |
L6 | 5.01 | 4.59 | 4.58 | 4.73 |
Elastic Modulus (MPa) | L3 | L4 | L5 | L6 | SD |
---|---|---|---|---|---|
Experimental | 62.41 | 65.57 | 51.80 | 50.07 | 7.68 |
FEM | 61.44 | 66.15 | 51.87 | 49.53 | 7.86 |
% Difference | 1.57 | 0.87 | 0.13 | 1.09 | 1.58 |
974.2 | 1039.1 | 1109.5 | 1124.9 | 69.42 |
Vertebra | L3 | L4 | L5 | L6 |
---|---|---|---|---|
FEM displacement (mm) | 5.26 | 5.35 | 4.85 | 4.68 |
Experimental displacement (mm) | 5.19 | 5.37 | 4.92 | 4.73 |
% Error | 1.457 | 0.5173 | 1.526 | 1.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Salazar, C.A.; Chamorro, C.E.; González-Estrada, O.A. Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis. Inventions 2024, 9, 36. https://doi.org/10.3390/inventions9020036
Hernández-Salazar CA, Chamorro CE, González-Estrada OA. Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis. Inventions. 2024; 9(2):36. https://doi.org/10.3390/inventions9020036
Chicago/Turabian StyleHernández-Salazar, Cristian A., Camilo E. Chamorro, and Octavio A. González-Estrada. 2024. "Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis" Inventions 9, no. 2: 36. https://doi.org/10.3390/inventions9020036
APA StyleHernández-Salazar, C. A., Chamorro, C. E., & González-Estrada, O. A. (2024). Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis. Inventions, 9(2), 36. https://doi.org/10.3390/inventions9020036