Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Heat Recapture System
5. NH3 Decomposition
6. Results and Discussion
6.1. Heat Recapture System
6.2. Heat Recapture NH3 Pyrolysis System
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reactant | Product | ||
---|---|---|---|
Mole ratio | 2 | 3 | 1 |
Relative molecular mass (gmol−1) | 17 | 2 | 28 |
Reactant Mass (g) | 134 | - | - |
Mole (mol) | 7.88 | 11.82 | 3.94 |
Product Mass (g) | - | 23.64 | 110.32 |
Calculated Product Mass Fraction (CPMF) | - | 0.176 | 0.824 |
Reported Product Mass Fraction (RPMF) | - | 0.18 | 0.82 |
Percentage Difference | - | 2.22% | 0.49% |
References
- Power, M. Mitsubishi Power|Mitsubishi Power Commences Development of World’s First Ammonia-fired 40 MW Class Gas Turbine System—Targets to Expand Lineup of Carbon-free Power Generation Options, with Commercialization around 2025. 2021. Available online: https://power.mhi.com/news/20210301.html#:~:text=YOKOHAMA%2C%20JAPAN%20(March%201%2C,increasing%20global%20focus%20on%20decarbonization (accessed on 21 February 2024).
- Goldmeer, D.J. Ammonia as a Gas Turbine Fuel; GE Gas Power: Atlanta, GA, USA, 2021. [Google Scholar]
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to 2040; USDOE Energy Information Administration (EIA): Washington, DC, USA, 2016.
- Africa’s First Hydrogen Power Plant to Produce Electricity by 2024. 2022. Available online: https://www.reuters.com/business/energy/africas-first-hydrogen-power-plant-seen-producing-electricity-2024-2022-09-12/#:~:text=CAPE%20TOWN%2C%20Sept%2012%20(Reuters,company%20executive%20said%20on%20Monday (accessed on 21 February 2024).
- Aresi, L. EnergyAustralia Modernizes Tallawarra A Power Plant to Support Energy Transition in Australia; GE VERNOVA: Cambridge, MA, USA, 2023. [Google Scholar]
- Qing, A. First hydrogen power plant in S’pore expected by first half of 2026. In The Straits Times; The Straits Times: Singapore, 2022. [Google Scholar]
- Hydrogen for Net Zero-A Critical Cost-Competitive Energy Vector. Hydrogen Council. 2021. Available online: https://hydrogencouncil.com/wp-content/uploads/2021/11/Hydrogen-for-Net-Zero.pdf (accessed on 21 February 2024).
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store. The Royal Society. 2020. Available online: https://royalsociety.org/green-ammonia (accessed on 21 February 2024).
- Cheddie, D. Ammonia as a Hydrogen Source for Fuel Cells: A Review; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Duan, X.; Ji, J.; Qian, G.; Fan, C.; Zhu, Y.; Zhou, X.; Chen, D.; Yuan, W. Ammonia decomposition on Fe (1 1 0), Co (1 1 1) and Ni (1 1 1) surfaces: A density functional theory study. J. Mol. Catal. A Chem. 2012, 357, 81–86. [Google Scholar] [CrossRef]
- Tamaru, K.; Tanaka, K.-i.; Fukasaku, S.; Ishida, S. Decomposition of ammonia on a nickel catalyst. Trans. Faraday Soc. 1965, 61, 765–772. [Google Scholar] [CrossRef]
- Maleki, H.; Fulton, M.; Bertola, V. Kinetic assessment of H2 production from NH3 decomposition over CoCeAlO catalyst in a microreactor: Experiments and CFD modelling. Chem. Eng. J. 2021, 411, 128595. [Google Scholar] [CrossRef]
- McCabe, R.W. Kinetics of ammonia decomposition on nickel. J. Catal. 1983, 79, 445–450. [Google Scholar] [CrossRef]
- Muroyama, H.; Saburi, C.; Matsui, T.; Eguchi, K. Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Appl. Catal. A Gen. 2012, 443, 119–124. [Google Scholar] [CrossRef]
- Okura, K.; Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Adv. 2018, 8, 32102–32110. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, A.; Fischer, C.; Thomson, W. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A Gen. 2002, 227, 231–240. [Google Scholar] [CrossRef]
- Realpe, N.; Kulkarni, S.R.; Cerrillo, J.L.; Morlanés, N.; Lezcano, G.; Katikaneni, S.P.; Paglieri, S.N.; Rakib, M.; Solami, B.; Gascon, J. Modeling-aided coupling of catalysts, conditions, membranes, and reactors for efficient hydrogen production from ammonia. React. Chem. Eng. 2023, 8, 989–1004. [Google Scholar] [CrossRef]
- Lee, J.; Ga, S.; Lim, D.; Lee, S.; Cho, H.; Kim, J. Carbon-free green hydrogen production process with induction heating-based ammonia decomposition reactor. Chem. Eng. J. 2023, 457, 141203. [Google Scholar] [CrossRef]
- Shen, Y.; Nazir, S.M.; Zhang, K.; Duwig, C. Waste heat recovery optimization in ammonia-based gas turbine applications. Energy 2023, 280, 128079. [Google Scholar] [CrossRef]
- Badescu, V. Optimal design and operation of ammonia decomposition reactors. Int. J. Energy Res. 2020, 44, 5360–5384. [Google Scholar] [CrossRef]
- Liang, C.; Li, W.; Wei, Z.; Xin, Q.; Li, C. Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts. Ind. Eng. Chem. Res. 2000, 39, 3694–3697. [Google Scholar] [CrossRef]
- Hu, X.-C.; Fu, X.-P.; Wang, W.-W.; Wang, X.; Wu, K.; Si, R.; Ma, C.; Jia, C.-J.; Yan, C.-H. Ceria-supported ruthenium clusters transforming from isolated single atoms for hydrogen production via decomposition of ammonia. Appl. Catal. B Environ. 2020, 268, 118424. [Google Scholar] [CrossRef]
- Logan, S.R.; Kemball, C. The catalytic decomposition of ammonia on evaporated metal films. Trans. Faraday Soc. 1960, 56, 144–153. [Google Scholar] [CrossRef]
- Yunus, A.; Cengel, A.J.G. Heat and Mass Transfer: Fundamentals & Applications, 6th ed.; McGraw Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Ansys®. Workbench; 2019 R1; Ansys, Inc.: Canonsburg, PA, USA, 2019. [Google Scholar]
- Adanta, D.; Fattah, I.R.; Muhammad, N.M. Comparison of standard k-epsilon and sst k-omega turbulence model for breastshot waterwheel simulation. J. Mech. Sci. Eng. 2020, 7, 39–44. [Google Scholar] [CrossRef]
- Tsai, W.; Vajo, J.; Weinberg, W. Inhibition by hydrogen of the heterogeneous decomposition of ammonia on platinum. J. Phys. Chem. 1985, 89, 4926–4932. [Google Scholar] [CrossRef]
- ANSYS. ANSYS FLUENT 12.0 Theory Guide. 23 January 2009. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm (accessed on 8 April 2024).
- Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renew. Sustain. Energy Rev. 2015, 49, 444–469. [Google Scholar] [CrossRef]
- Ojelade, O.A.; Zaman, S.F. Ammonia decomposition for hydrogen production: A thermodynamic study. Chem. Pap. 2021, 75, 57–65. [Google Scholar] [CrossRef]
- Feng, P.; Lee, M.; Wang, D.; Suzuki, Y. Ammonia thermal decomposition on quartz and stainless steel walls. Int. J. Hydrogen Energy 2023, 48, 29209–29219. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the decomposition of ammonia to generate hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
Overall Heat Transfer Coefficient | Number of Tubes |
---|---|
10 | 49 |
25 | 19 |
50 | 9 |
75 | 6 |
100 | 4 |
Parameter | Value/Description |
---|---|
Exhaust Gas Inlet Temperature | 650 °C |
Exhaust Gas Inlet Velocity | 12 m/s |
NH3 Inlet Temperature | 30 °C |
NH3 Inlet Velocity | 4 m/s |
Material | Stainless Steel (SS316) |
Mesh Element Size (mm) | Number of Mesh Node | Number of Mesh Elements | NH3 Average Temperature (K) | NH3 Average Turbulent Kinetic Energy (J/kg) | NH3 Effective Prandtl Number |
---|---|---|---|---|---|
20 | 655,461 | 1,204,453 | 865.1 | 0.0161 | 0.8908 |
10 | 655,399 | 1,203,915 | 865.7 | 0.0161 | 0.8909 |
8 | 655,819 | 1,206,553 | 867.5 | 0.0161 | 0.8909 |
5 | 654,496 | 1,202,314 | 865.4 | 0.0161 | 0.8908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.T.; Ng, E.Y.-K.; Saeedipour, H.; Lee, H.K. Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy. Inventions 2024, 9, 56. https://doi.org/10.3390/inventions9030056
Lim JT, Ng EY-K, Saeedipour H, Lee HK. Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy. Inventions. 2024; 9(3):56. https://doi.org/10.3390/inventions9030056
Chicago/Turabian StyleLim, Jian Tiong, Eddie Yin-Kwee Ng, Hamid Saeedipour, and Hiang Kwee Lee. 2024. "Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy" Inventions 9, no. 3: 56. https://doi.org/10.3390/inventions9030056
APA StyleLim, J. T., Ng, E. Y. -K., Saeedipour, H., & Lee, H. K. (2024). Numerical Simulation of Effective Heat Recapture Ammonia Pyrolysis System for Hydrogen Energy. Inventions, 9(3), 56. https://doi.org/10.3390/inventions9030056