Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Framework
2.2. Machine Learning Framework
2.2.1. Data Pipeline
2.2.2. Numerical Simulation
2.2.3. Dataset Generation
- Time (s)—The time elapsed since the start of the print until reaching that position;
- Speed (cm/s)—The motion speed of the extruder at that location;
- Flow (m/s)—The material flow at that location;
- Distance (mm)—The distance between that location and the previous location sampled in the dataset;
- Angle (degrees)—The difference in angle between the tangent vector at that location and the previous datapoint (important to distinguish between the type of motion being executed—straight, curved, etc.);
- Height (cm)—The distance of the extruder tip to the deposition plane (printing base or previous layer);
- Diameter (cm)—The diameter of the extruder;
- Width (cm)—The width of the layer at that location;
- Overlay—The number of intersections between a perpendicular line to the printing path drawn at that location and previous locations.
3. Results and Discussion
3.1. Algorithm: Training and Inference
3.1.1. Model Architecture
3.1.2. Model Application
3.2. Computer Vision System
3.3. Real-Time Deployment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Khan, M.S.; Sanchez, F.; Zhou, H. 3-D printing of concrete: Beyond horizons. Cem. Concr. Res. 2020, 133, 106070. [Google Scholar] [CrossRef]
- Paul, S.C.; van Zijl, G.P.A.G.; Gibson, I. A review of 3D concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyp. J. 2018, 24, 784–798. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 2021, 116, 100736. [Google Scholar] [CrossRef]
- Baduge, S.K.; Navaratnam, S.; Abu-Zidan, Y.; McCormack, T.; Nguyen, K.; Mendis, P.; Zhang, G.; Aye, L. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures 2021, 29, 1597–1609. [Google Scholar] [CrossRef]
- Minář, J.; Pilnaj, D.; Uřičář, J.; Veselý, P.; Dušek, K. Application of solid-phase microextraction arrows for characterizing volatile organic compounds from 3D printing of acrylonitrile-styrene-acrylate filament. J. Chromatogr. A 2023, 1705, 464180. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 122–125. [Google Scholar]
- Rossi, G.; Nicholas, P. Encoded Images: Representational protocols for integrating cGANs in iterative computational design processes. In ACADIA 2020 Distributed Proximities: Proceedings of the 40th Annual Conference of the Association for Computer Aided Design in Architecture, Online, 24–30 October 2020; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 218–227. [Google Scholar]
- Thomsen, M.R.; Nicholas, P.; Tamke, M.; Gatz, S.; Sinke, Y.; Rossi, G. Towards machine learning for architectural fabrication in the age of industry 4.0. Int. J. Archit. Comput. 2020, 18, 335–352. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Visan, A.I.; Ristoscu, C.; Mihailescu, I.N. Artificial neural network algorithms for 3D printing. Materials 2021, 14, 163. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Goh, G.L.; Goh, G.D.; Pan, J.W.; Teng, P.S.P.; Kong, P.W. Automated Service Height Fault Detection Using Computer Vision and Machine Learning for Badminton Matches. Sensors 2023, 23, 9759. [Google Scholar] [CrossRef]
- Golnabi, H.; Asadpour, A. Design and application of industrial machine vision systems. Robot. Comput. Integr. Manuf. 2007, 23, 630–637. [Google Scholar] [CrossRef]
- Langeland, S.A. Automatic Error Detection in 3D Pritning Using Computer Vision. Master’s Thesis, The University of Bergen, Bergen, Norway, 2020. [Google Scholar]
- Sutjipto, S.; Tish, D.; Paul, G.; Vidal-Calleja, T.; Schork, T. Towards Visual Feedback Loops for Robot-Controlled Additive Manufacturing. In Robotic Fabrication in Architecture, Art and Design 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 85–97. [Google Scholar] [CrossRef]
- Kong, L.; Peng, X.; Chen, Y. Fast and Accurate Defects Detection for Additive Manufactured Parts by Multispectrum and Machine Learning. 3D Print. Addit. Manuf. 2023, 10, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Garfo, S.; Muktadir, M.A.; Yi, S. Defect Detection on 3D Print Products and in Concrete Structures Using Image Processing and Convolution Neural Network. J. Mechatron. Robot. 2020, 4, 74–84. [Google Scholar] [CrossRef]
- Delli, U.; Chang, S. Automated Process Monitoring in 3D Printing Using Supervised Machine Learning. Procedia Manuf. 2018, 26, 865–870. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Remond, S.; Gallias, J.L. Influence of cement grouts composition on the rheological behaviour. Cem. Concr. Res. 2011, 41, 292–300. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology Principles, Measurements, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Güneyisi, E.; Gesoglu, M.; Naji, N.; Ipek, S. Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models. Arch. Civ. Mech. Eng. 2016, 16, 9–19. [Google Scholar] [CrossRef]
- Konan, N.A.; Rosenbaum, E.; Massoudi, M. On the Response of a Herschel–Bulkley Fluid Due to a Moving Plate. Polymers 2022, 14, 3890. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl. Rheol. 2007, 17, 56244. [Google Scholar] [CrossRef]
- OpenFOAM, The Open Source CFD Toolbox. Available online: https://www.openfoam.com/ (accessed on 11 April 2023).
- OpenFOAM: User Guide: Overset. Available online: https://www.openfoam.com/documentation/guides/v2112/doc/guide-overset.html (accessed on 17 May 2023).
- FeltusChristophe. Learning Algorithm Recommendation Framework for IS and CPS Security. Int. J. Syst. Softw. Secur. Prot. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Stefas, A.; Rossi, A.; Tessmann, O. Funken Serial Protocol Toolkit for Interactive Prototyping. In Proceedings of the 36th eCAADe Conference, Łódź, Poland, 17–21 September 2018; Volume 2. [Google Scholar]
- Sanfilippo, F.; Hatledal, L.I.; Zhang, H.; Fago, M.; Pettersen, K.Y. Controlling Kuka industrial robots. IEEE Robot. Autom. Mag. 2015, 22, 96–109. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Density [ρ] | 2070 kg/m3 |
Yield Stress [τ0] | 8.28 kPa |
Consistency Index [K] | 20.7 Pa.s1.56 |
Viscosity Exponent [n] | 1.56 |
Patch | Pressure, p | Velocity, U |
---|---|---|
inlet | fixed flux | fixed value Uin |
overset | overset | overset |
nozzle Walls | fixed flux | 0 |
outlet | constant atmospheric pressure | null normal gradient |
floor | fixed flux | 0 |
Time [s] | Speed [cm/s] | Flow [m/s] | Distance [mm] | Angle [degree] | Height [cm] | Diameter [cm] | Width [cm] | Overlay |
---|---|---|---|---|---|---|---|---|
4.26344 | 11.3 | 0.233 | 30 | 0.036599 | 12 | 20 | 57.427403 | 0 |
7.22211 | 10.0 | 0.264 | 40 | 0.035724 | 12 | 20 | 57.337229 | 2 |
1.24866 | 12.7 | 0.264 | 60 | 0.033314 | 12 | 40 | 56.499766 | 0 |
3.27521 | 8.4 | 0.264 | 30 | 0.031016 | 8 | 20 | 55.649535 | 0 |
2.30175 | 8.9 | 0.264 | 30 | 0.028557 | 12 | 40 | 55.088962 | 3 |
15.3283 | 9.1 | 0.264 | 12 | 0.026146 | 10 | 20 | 57.243402 | 0 |
33.35485 | 7.7 | 0.292 | 30 | 0.023822 | 12 | 40 | 58.402407 | 0 |
64.3814 | 11.3 | 0.292 | 14 | 0.021642 | 12 | 20 | 63.236045 | 11 |
114.40795 | 11.0 | 0.292 | 30 | 0.01961 | 8 | 10 | 63.371653 | 0 |
26.43449 | 8.3 | 0.292 | 15 | 0.017804 | 10 | 20 | 63.022733 | 5 |
88.46104 | 12.3 | 0.307 | 15 | 0.015641 | 12 | 25 | 60.956338 | 0 |
179.48759 | 10.0 | 0.307 | 45 | 0.013088 | 14 | 20 | 61.726337 | 3 |
57.51414 | 10.0 | 0.307 | 76 | 0.010921 | 6 | 25 | 66.683418 | 1 |
61.54069 | 9.6 | 0.331 | 10 | 0.009159 | 12 | 20 | 63.430119 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.M.; Wagner, G.; Silva, R.; Morais, A.; Ribeiro, J.; Mould, S.; Figueiredo, B.; Nóbrega, J.M.; Cruz, P.J.S. Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms. Inventions 2024, 9, 80. https://doi.org/10.3390/inventions9040080
Silva JM, Wagner G, Silva R, Morais A, Ribeiro J, Mould S, Figueiredo B, Nóbrega JM, Cruz PJS. Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms. Inventions. 2024; 9(4):80. https://doi.org/10.3390/inventions9040080
Chicago/Turabian StyleSilva, João M., Gabriel Wagner, Rafael Silva, António Morais, João Ribeiro, Sacha Mould, Bruno Figueiredo, João M. Nóbrega, and Paulo J. S. Cruz. 2024. "Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms" Inventions 9, no. 4: 80. https://doi.org/10.3390/inventions9040080
APA StyleSilva, J. M., Wagner, G., Silva, R., Morais, A., Ribeiro, J., Mould, S., Figueiredo, B., Nóbrega, J. M., & Cruz, P. J. S. (2024). Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms. Inventions, 9(4), 80. https://doi.org/10.3390/inventions9040080