PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Mechanical Scanning System
2.2. The Detectors
- Good scintillation efficiency to transform the radiation energy into detectable light.
- Linearity, i.e., the light yield ought to be proportional to the deposited energy over as wide a range as possible.
- The induced luminescence decay time should be short enough to prevent a pile-up.
- The material has to be transparent to the wavelength of its own emission and possess good optical quality and uniformity.
- Its refractive index should preferably be close to that of glass (∼1.5) to ease the optical coupling to photodetectors, which convert the light pulses into electrical ones.
2.3. Data Acquisition Electronics
3. Results
3.1. Single Detector Features
3.2. Characterization of the 128 Detectors
3.3. Scanner Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Decommissioning of Nuclear Installations. Available online: https://www.iaea.org/topics/decommissioning (accessed on 19 July 2024).
- International Atomic Energy Agency. Status of Technology for Volume Reduction and Treatment of Low and Intermediate Level Solid Radioactive Waste; Technical Reports Series No. 360; IAEA: Vienna, Austria, 1994. [Google Scholar]
- International Atomic Energy Agency. Status and Trends in Spent Fuel and Radioactive Waste Management; No. NW-T-1.14 (Rev. 1); IAEA: Vienna, Austria, 2022. [Google Scholar]
- Donovan, J. Robots, AI and 3D Models: How High-Tech Breakthroughs Help Nuclear Decommissioning. Available online: https://www.iaea.org/bulletin/robots-ai-and-3d-models-how-high-tech-breakthroughs-help-nuclear-decommissioning (accessed on 19 July 2024).
- Monk, S.D.; West, C.; Bandala, M.; Dixon, N.; Montazeri, A.; Taylor, C.J.; Cheneler, D. A Low-Cost and Semi-Autonomous Robotic Scanning System for Characterising Radiological Waste. Robotics 2021, 10, 119. [Google Scholar] [CrossRef]
- Querfurth, F. Innovative Robotics for Radwaste Management. 5 April 2022. Available online: https://www.neimagazine.com/features/featureinnovative-robotics-for-radwaste-management-9602466/ (accessed on 14 May 2024).
- Blank, A.; Havenith, A.; Kohn, S.; Querfurth, F.; Zwingel, M.; Metzner, M.; Franke, J. Robotic Technologies for Volume-Optimized Conditioning of Radioactive Waste—VIRERO. In Proceedings of the 9th International Conference on Nuclear Decommissioning, Aachen, Germany, 12–14 November 2020. [Google Scholar]
- MICADO Project. Available online: https://www.micado-project.eu/ (accessed on 19 July 2024).
- Pescatore, C. Safety, safety case and society—Lessons from the experience of the Forum on Stakeholder Confidence and other NEA initiatives. In The Safety Case for Deep Geological Disposal of Radioactive Waste: Proceedings of the 2013 State of the Art. Symposium Proceedings, Paris, France, 7–9 October 2013; NEA: Paris, France; p. 391.
- Radioactive Waste Strategy. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/838828/Radioactive_Waste_Strategy_September_2019.pdf (accessed on 14 May 2024).
- Radioactive Waste Management. Available online: https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-waste/radioactive-waste-management (accessed on 19 July 2024).
- General Safety Guide No. GSG-1; Classification of Radioactive Waste; IAEA Safety Standards: Vienna, Austria, 2009.
- Sort and Segregate Nuclear Waste. Available online: https://assets.publishing.service.gov.uk/media/5f17f6a23a6f40727bf9fe12/Sort_and_Segregate_Nuclear_Waste_Specification.pdf (accessed on 14 May 2024).
- Verbelen, Y.; Martin, P.G.; Ahmad, K.; Scott, T.B. Miniaturised Low-Cost Gamma Scanning Platform for Contamination Identification, Localisation and Characterisation: A New Instrument in the Decommissioning Toolkit. Sensors 2021, 21, 2884. [Google Scholar] [CrossRef] [PubMed]
- Amoyal, G.; Schoepff, V.; Carrel, F.; Michel, M.; Blanc de Lanaute, N.; Angélique, J.C. Development of a hybrid gamma camera based on Timepix3 for nuclear industry applications. Nucl. Instr. Meth. A 2021, 987, 164838. [Google Scholar] [CrossRef]
- Venkataraman, R.; Villani, M.; Croft, S.; McClay, P.; McElroy, R.; Kane, S.; Mueller, W.; Estep, R. An integrated Tomographic Gamma Scanning system for non-destructive assay of radioactive waste. Nucl. Instr. Meth. A 2007, 579, 375. [Google Scholar] [CrossRef]
- Poma, G.E.; Cosentino, L.; Longhitano, F.; Finocchiaro, P. Hot-spots finding with modular gamma-ray system for sort and segregate activities. EPJ Web Conf. 2023, 288, 06007. [Google Scholar] [CrossRef]
- Alara Principle CDC Radiation and Health. Available online: https://www.cdc.gov/nceh/radiation/alara.html (accessed on 14 May 2024).
- European Alara Network. Available online: https://www.eu-alara.net/ (accessed on 14 May 2024).
- Dolgoshein, B.; Balagura, V.; Buzhan, P.; Danilov, M.; Filatov, L.; Garutti, E.; Groll, M.; Ilyin, A.; Kantserova, V.; Kaplin, V.; et al. Status report on silicon photomultiplier development and its applications. Nucl. Instrum. Meth. A 2006, 563, 368. [Google Scholar] [CrossRef]
- Zappa, F.; Tisa, S.; Tosi, A. Cova, Principles and features of single-photon avalanche diode arrays. Sens. Actuators A 2007, 140, 103. [Google Scholar] [CrossRef]
- Finocchiaro, P.; Pappalardo, A.; Cosentino, L.; Belluso, M.; Billotta, S.; Bonanno, G.; Carbone, B.; Condorelli, G.; Di Mauro, S.; Fallica, G.; et al. Characterization of a Novel 100-Channel Silicon Photomultiplier—Part I: Noise. IEEE Trans. Electron. Devices 2008, 55, 2757. [Google Scholar] [CrossRef]
- Finocchiaro, P.; Pappalardo, A.; Cosentino, L.; Belluso, M.; Billotta, S.; Bonanno, G.; Carbone, B.; Condorelli, G.; Di Mauro, S.; Fallica, G.; et al. Characterization of a Novel 100-Channel Silicon Photomultiplier—Part II: Charge and Time. IEEE Trans. Electron Devices 2008, 55, 2765. [Google Scholar] [CrossRef]
- Longhitano, F.; Poma, G.E.; Cosentino, L.; Finocchiaro, P. A Scintillator Array Table with Spectroscopic Features. Sensors 2022, 22, 4754. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Cosentino, L.; Longhitano, F.; Minutoli, S.; Musico, P.; Osipenko, M.; Poma, G.E.; Ripani, M.; Finocchiaro, P. The gamma and neutron sensor system for rapid dose rate mapping in the CLEANDEM Project. Sensors 2023, 23, 4210. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu Catalog. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s14160_s14161_series_kapd1064e.pdf (accessed on 14 May 2024).
- VX2745 Digitizer. Available online: https://www.caen.it/products/vx2745/ (accessed on 17 May 2024).
- COMPASS Multiparametric DAQ Software for Physics Applications. Available online: https://www.caen.it/products/compass/ (accessed on 17 May 2024).
- CLEANDEM EU Project Horizon 2020, GA 945335. Available online: https://cordis.europa.eu/project/id/945335/ (accessed on 17 May 2024).
- Ghassemi, A.; Sato, K.; Kobayashi, K. MPPC. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/mppc_kapd9005e.pdf (accessed on 17 May 2024).
- NIST: X-ray Mass Attenuation Coefficients—Lead. Available online: https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z82.html (accessed on 16 July 2024).
- DOD; DOE; EPA; NRC. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), Revision 1, NUREG-1575, DOE/EH-0624, EPA 402-R-97-016; Department of Defense: Washington, DC, USA, 2000; p. 6.34. [Google Scholar]
- U.S. Nuclear Regulatory Commission (NRC). Derivation of the Currie Equations. Available online: https://www.nrc.gov/docs/ML1717/ML17178A298.pdf (accessed on 19 June 2024).
- Brodsky, A. Exact Calculation of Probabilities of False Positives and False Negatives for Low Background Counting. Health Phys. 1992, 63, 198–204. [Google Scholar] [CrossRef] [PubMed]
Property | Value |
---|---|
Density | 4.51 g/cm3 |
<Z> | 54 |
Attenuation coefficient at 662 keV | 0.36 cm−1 |
Light yield | 60 photons/keV |
Energy resolution at 662 keV | 5–10% FWHM |
Primary decay time constant | 960 ns |
Wavelength of max emission | 550 nm |
Refractive index at 550 nm | 1.79 |
Cost of 1 × 1 × 1 cm3 crystal | ≈EUR 30 |
Source | Peak Energy [keV] | Activity [kBq] |
---|---|---|
22Na | 511, 1274 | 15.4 |
60Co | 1173, 1330 | 56.0 |
137Cs | 662 | 1400 |
Source | Duration [s] | Average Counting Rate [s−1] |
---|---|---|
22Na | 20,779 | 13.2 |
60Co | 52,590 | 22.9 |
137Cs | 4442 | 273.3 |
Lead Transmission | Error | |
---|---|---|
Spectrum integral | 41.8% | 0.5% |
662 keV peak area | 40.6% | 1.2% |
Deposited energy | 41.8% | 1.9% |
Calculated via NIST µen | 50.2% |
X [cm] | Y [cm] | σX [cm] | σY [cm] | |
---|---|---|---|---|
137Cs free, top view | 15.1 | 9.6 | 3.2 | 2.7 |
137Cs free, bottom view | 15.4 | 11.6 | 3.8 | 3.2 |
22Na free, top view | 71.7 | 31.8 | 3.2 | 2.8 |
22Na free, bottom view | 71.7 | 32.8 | 3.7 | 3.3 |
60Co free, top view | 30.8 | 54.2 | 3.2 | 2.8 |
60Co free, bottom view | 30.7 | 54.3 | 3.6 | 3.0 |
137Cs lead, top view | 15.0 | 9.6 | 2.5 | 2.1 |
137Cs lead, bottom view | 15.4 | 11.6 | 3.7 | 3.1 |
22Na lead, top view | 71.9 | 31.8 | 3.1 | 2.7 |
22Na lead, bottom view | 71.9 | 32.7 | 3.6 | 3.2 |
60Co lead, top view | 30.8 | 54.2 | 2.9 | 2.8 |
60Co lead, bottom view | 30.8 | 54.3 | 3.7 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poma, G.E.; Failla, C.R.; Amaducci, S.; Cosentino, L.; Longhitano, F.; Vecchio, G.; Finocchiaro, P. PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis. Inventions 2024, 9, 85. https://doi.org/10.3390/inventions9040085
Poma GE, Failla CR, Amaducci S, Cosentino L, Longhitano F, Vecchio G, Finocchiaro P. PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis. Inventions. 2024; 9(4):85. https://doi.org/10.3390/inventions9040085
Chicago/Turabian StylePoma, Gaetano Elio, Chiara Rita Failla, Simone Amaducci, Luigi Cosentino, Fabio Longhitano, Gianfranco Vecchio, and Paolo Finocchiaro. 2024. "PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis" Inventions 9, no. 4: 85. https://doi.org/10.3390/inventions9040085
APA StylePoma, G. E., Failla, C. R., Amaducci, S., Cosentino, L., Longhitano, F., Vecchio, G., & Finocchiaro, P. (2024). PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis. Inventions, 9(4), 85. https://doi.org/10.3390/inventions9040085