Systematic Review on Additive Friction Stir Deposition: Materials, Processes, Monitoring and Modelling
Abstract
:1. Introduction
2. Additive Friction Stir Deposition
2.1. AFSD Tools
2.2. Advantages of the AFSD Process
2.3. Limitations of the AFSD Process
3. Additive Friction Stir Deposition Process Parameters
4. Additive Friction Stir Deposition Process Monitoring
5. Process Modelling of Additive Friction Stir Deposition
6. Additive Friction Stir Deposition Metallurgy
7. Summary
- AFSD is an emerging solid-state non-fusion AM technology with several benefits, especially for large-scale part manufacturing, to replace castings or forgings with long-lead times.
- Aluminium alloys are by far the most studied alloy group, with a range of AA2xxx, AA6xxx and AA7xxx alloys. There are some studies on stainless steels, Mg alloys, tool steels, and Ti6Al4V, but to expand the available material range, further research is needed.
- Defect-free part manufacturing in AFSD is highly dependent on the proper construction of process windows, with the most-studied key process variables being layer height, spindle speed, traverse speed, and actuator feed. For some materials, the process windows can be quite large, making the process development easier, whereas for more demanding materials such as high-strength Al alloys, the process windows are narrower.
- Unlike other additive manufacturing technologies based on fusion, AFSD achieves fully dense material when the process parameters are appropriately selected and issues such as a lack of fusion and keyhole porosities are avoided. The excessive flash regions on the sides of the deposited material, which are more prone to defects, need to be machined to reach the final geometry.
- The in situ monitoring of the process primarily consists of measuring temperature, force, torque, and acoustic emission levels. As a future direction, greater effort should be made to use closed-loop control instead of simply gathering the related data and only monitoring.
- Although there are limited process-modelling studies on this specific topic, research on similar processes such as friction stir welding is more prevalent than research on AFSD.
- Research on advanced mechanical properties such as fatigue or creep are mostly lacking for the alloys addressed so far, such as high-strength Al alloys. It is also clear that the range of available materials needs to be widened by determining process windows for other alloys.
- Finally, it is necessary to implement effective process modelling and simulation methods that can be executed using commonly utilised analysis software, in order to make it accessible to a wide range of researchers.
Funding
Data Availability Statement
Conflicts of Interest
References
- Bourell, D.L.; Frazier, W.; Kuhn, H.; Seifi, M. ASM Handbook®. Additive Manufacturing Processes; ASM International: Materials Park, OH, USA, 2020. [Google Scholar]
- Pei, E.; Kabir, I.R.; Leutenecker-Twelsiek, B. History of AM. In Springer Handbook of Additive Manufacturing; Springer International Publishing: Cham, Switzerland, 2023; pp. 3–29. [Google Scholar]
- Khodabakhshi, F.; Gerlich, A.P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. J. Manuf. Process. 2018, 36, 77–92. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021; Volume 17, pp. 160–186. [Google Scholar]
- Dilip, J.J.S.; Rafi, H.K.; Ram, G.D.J. A new additive manufacturing process based on friction deposition. Trans. Indian Inst. Met. 2011, 64, 27–30. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Karthik, G.M.; Ram, G.J.; Kottada, R.S. Friction deposition of titanium particle reinforced aluminum matrix composites. Mater. Sci. Eng. A 2016, 653, 71–83. [Google Scholar] [CrossRef]
- Elfishawy, E.; Ahmed, M.M.Z.; El-Sayed Seleman, M.M. Additive manufacturing of aluminum using friction stir deposition. In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 227–238. [Google Scholar]
- Griffiths, R.J.; Petersen, D.T.; Garcia, D.; Yu, H.Z. Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum Alloy. Appl. Sci. 2019, 9, 3486. [Google Scholar] [CrossRef]
- Martin, L.P.; Luccitti, A.; Walluk, M. Repair of aluminum 6061 plate by additive friction stir deposition. Int. J. Adv. Manuf. Technol. 2021, 118, 759–773. [Google Scholar] [CrossRef]
- Yu, H.Z.; Mishra, R.S. Additive Friction Stir Deposition: A Deformation Processing Route to Metal Additive Manufacturing. Mater. Res. Lett. 2021, 9, 71–83. [Google Scholar] [CrossRef]
- Merritt, G.R.; Williams, M.B.; Allison, P.G.; Jordon, J.B.; Rushing, T.W.; Cousin, C.A. Closed-Loop Temperature and Force Control of Additive Friction Stir Deposition. J. Manuf. Mater. Process. 2022, 6, 92. [Google Scholar] [CrossRef]
- Garcia, D.; Hartley, W.D.; Rauch, H.A.; Griffiths, R.J.; Wang, R.; Kong, Z.J.; Zhu, Y.; Yu, H.Z. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si. Addit. Manuf. 2020, 34, 101386. [Google Scholar] [CrossRef]
- Fehrenbacher, A.; Schmale, J.R.; Zinn, M.R.; Pfefferkorn, F.E. Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding. J. Manuf. Sci. Eng. 2014, 136, 021009. [Google Scholar] [CrossRef]
- Mishra, R.S.; Haridas, R.S.; Agrawal, P. Friction Stir-based Additive Manufacturing. Sci. Technol. Weld. Join. 2022, 27, 141–165. [Google Scholar] [CrossRef]
- Hartley, W.D.; Garcia, D.; Yoder, J.K.; Poczatek, E.; Forsmark, J.H.; Luckey, S.G.; Dillard, D.A.; Hang, Z.Y. Solid-State Cladding on Thin Automotive Sheet Metals Enabled by Additive Friction Stir Deposition. J. Mater. Processing Technol. 2021, 291, 117045. [Google Scholar] [CrossRef]
- Griffiths, R.J.; Garcia, D.; Song, J.; Vasudevan, V.K.; Steiner, M.A.; Cai, W.; Hang, Z.Y. Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages. Materialia 2021, 15, 100967. [Google Scholar] [CrossRef]
- Gopan, V.; Wins, K.L.D.; Surendran, A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review. CIRP J. Manuf. Sci. Technol. 2021, 32, 228–248. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, Z.J.; Li, J.Y.; Zu, Y.F.; Liu, W.W.; Sha, J.J. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 104, 767–784. [Google Scholar] [CrossRef]
- Stubblefield, G.G.; Fraser, K.; Phillips, B.J.; Jordon, J.B.; Allison, P.G. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater. Des. 2021, 202, 109514. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, T.; Wang, T.; Dowden, S.; Neogi, A.; Dahotre, N.B. Behavioral Simulations and Experimental Evaluations of Stress Induced Spatial Nonuniformity of Dynamic Bulk Modulus in Additive Friction Stir Deposited AA 6061. J. Manuf. Process. 2023, 94, 454–465. [Google Scholar] [CrossRef]
- Elshaghoul, Y.G.Y.; Seleman, M.M.E.-S.; Bakkar, A.; Elnekhaily, S.A.; Albaijan, I.; Ahmed, M.M.Z.; Abdel-Samad, A.; Reda, R. Additive Friction Stir Deposition of AA7075-T6 Alloy: Impact of Process Parameters on the Microstructures and Properties of the Continuously Deposited Multilayered Parts. Appl. Sci. 2023, 13, 10255. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Elfishawy, E.; Alzahrani, B.; Touileb, K.; Habba, M.I.A. The Effect of Temper Condition and Feeding Speed on the Additive Manufacturing of AA2011 Parts Using Friction Stir Deposition. Materials 2021, 14, 6396. [Google Scholar] [CrossRef]
- Ghadimi, H.; Talachian, M.; Ding, H.; Emanet, S.; Guo, S. The Effects of Layer Thickness on the Mechanical Properties of Additive Friction Stir Deposition-Fabricated Aluminum Alloy 6061 Parts. Metals 2024, 14, 101. [Google Scholar] [CrossRef]
- Tang, W.; Yang, X.; Tian, C. Influence of Rotation Speed on Interfacial Bonding Mechanism and Mechanical Performance of Aluminum 6061 Fabricated by Multilayer Friction-based Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2023, 126, 4119–4133. [Google Scholar] [CrossRef]
- Yakubov, V.; Ostergaard, H.; Bhagavath, S.; Leung, C.L.A.; Hughes, J.; Yasa, E.; Khezri, M.; Löschke, S.K.; Li, Q.; Paradowska, A.M. Recycled aluminium feedstock in metal additive manufacturing: A state of the art review. Heliyon 2024, 10, e27243. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.; Haridas, R.S.; Yadav, S.; Thapliyal, S.; Dhal, A.; Mishra, R.S. Additive friction stir deposition of SS316: Effect of process parameters on microstructure evolution. Mater. Charact. 2023, 195, 112470. [Google Scholar] [CrossRef]
- Chen, G.; Wu, K.; Wang, Y.; Zhu, Z.; Nie, P.; Hu, F. Effect of rotational speed and feed rate on microstructure and mechanical properties of 6061 aluminum alloy manufactured by additive friction stir deposition. Int. J. Adv. Manuf. Technol. 2023, 127, 1165–1176. [Google Scholar] [CrossRef]
- Mendieta, L.E.U.; Poyraz, O.; Yasa, E.; Hughes, J. An Experimental and Numerical Study on the Additive Friction Stir Deposition of Al 6061. In Proceedings of the AMC Turkey 2024, Antalya, Turkiye, 25–27 April 2024. [Google Scholar]
- Griffiths, R.J.; Perry, M.E.J.; Sietins, J.M.; Zhu, Y.; Hardwick, N.; Cox, C.D.; Rauch, H.A.; Yu, H.Z. A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD. J. Mater. Eng. Perform. 2018, 28, 648–656. [Google Scholar] [CrossRef]
- Yoder, J.K.; Griffiths, R.J.; Yu, H.Z. Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties. Mater. Des. 2021, 198, 109288. [Google Scholar] [CrossRef]
- Perry, M.E.; Griffiths, R.J.; Garcia, D.; Sietins, J.M.; Zhu, Y.; Hang, Z.Y. Morphological and Microstructural Investigation of the Non-Planar Interface Formed in Solid-State Metal Additive Manufacturing by Additive Friction Stir Deposition. Addit. Manuf. 2020, 35, 101293. [Google Scholar] [CrossRef]
- Williams, M.B.; Zhu, N.; Palya, N.I.; Hoarston, J.B.; McDonnell, M.M.; Kelly, M.R.; Lalonde, A.D.; Brewer, L.N.; Jordon, J.B.; Allison, P.G. Towards Understanding the Relationships between Processing Conditions and Mechanical Performance of the Additive Friction Stir Deposition Process. Metals 2023, 13, 1663. [Google Scholar] [CrossRef]
- Chen, G.; Wu, K.; Wang, Y.; Sun, W.; Zhu, Z.; Lin, Y.; Hu, F. Numerical and Experimental Study on the Temperature Field of Additive Friction Stir Deposition. In Proceedings of the 2023 5th International Conference on Robotics and Computer Vision (ICRCV), Nanjing, China, 15–17 September 2023; pp. 266–270. [Google Scholar]
- Hu, F.; Chen, G.; Lin, Y.; Wang, H.; Zhu, Z. Numerical and experimental study on the thermal process during additive friction stir deposition. CIRP J. Manuf. Sci. Technol. 2024, 48, 55–66. [Google Scholar] [CrossRef]
- Kincaid, J.; Charles, E.; Garcia, R.; Dvorak, J.; No, T.; Smith, S.; Schmitz, T. Process planning for hybrid manufacturing using additive friction stir deposition. Manuf. Lett. 2023, 37, 26–31. [Google Scholar] [CrossRef]
- Agrawal, P.; Haridas, R.S.; Yadav, S.; Thapliyal, S.; Gaddam, S.; Verma, R.; Mishra, R.S. Processing-Structure-Property Correlation in Additive Friction Stir Deposited Ti6Al4V Alloy from Recycled Metal Chips. Addit. Manuf. 2021, 47, 102259. [Google Scholar]
- Patil, S.M.; Krishna, K.M.; Sharma, S.; Joshi, S.S.; Radhakrishnan, M.; Banerjee, R.; Dahotre, N.B. Thermo-Mechanical Process Variables Driven Microstructure Evolution During Additive Friction Stir Deposition of IN625. Addit. Manuf. 2024, 80, 103958. [Google Scholar] [CrossRef]
- Rivera, O.G.; Allison, P.G.; Jordon, J.B.; Rodriguez, O.L.; Brewer, L.N.; McClelland, Z.; Whittington, W.R.; Francis, D.; Su, J.; Martens, R.L.; et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater. Sci. Eng. A 2017, 694, 1–9. [Google Scholar] [CrossRef]
- Avery, D.Z.; Rivera, O.G.; Mason, C.J.T.; Phillips, B.J.; Jordon, J.B.; Su, J.; Allison, P.G. Fatigue Behavior of Solid-State Additive Manufactured Inconel 625. Jom 2018, 70, 2475–2484. [Google Scholar] [CrossRef]
- Farabi, E.; Babaniaris, S.; Barnett, M.R.; Fabijanic, D.M. Microstructure and mechanical properties of Ti6Al4V alloys fabricated by additive friction stir deposition. Addit. Manuf. Lett. 2022, 2, 100034. [Google Scholar] [CrossRef]
- Williams, M.B.; Robinson, T.W.; Williamson, C.J.; Kinser, R.P.; Ashmore, N.A.; Allison, P.G.; Jordon, J.B. Elucidating the Effect of Additive Friction Stir Deposition on The Resulting Microstructure and Mechanical Properties of Magnesium Alloy we43. Metals 2021, 11, 1739. [Google Scholar] [CrossRef]
- Luo, T.; Tang, W.; Wang, R.; Wang, S.; Xiao, L.; Yang, X. Microstructure heterogeneity and mechanical properties of Mg-Gd-Y-Zr alloy fabricated by force-controlled additive friction stir deposition. Mater. Lett. 2023, 340, 134164. [Google Scholar] [CrossRef]
- Calvert, J.R. Microstructure and Mechanical Properties of WE43 Alloy Produced via Additive Friction Stir Technology. Doctoral Dissertation, Virginia Tech, Blacksburg, VA, USA, 2015. [Google Scholar]
- Joshi, S.S.; Patil, S.M.; Mazumder, S.; Sharma, S.; Riley, D.A.; Dowden, S.; Banerjee, R.; Dahotre, N.B. Additive friction stir deposition of AZ31B magnesium alloy. J. Magnes. Alloy. 2022, 10, 2404–2420. [Google Scholar] [CrossRef]
- Robinson, T.; Williams, M.; Rao, H.; Kinser, R.P.; Allison, P.G.; Jordon, J.B. Microstructural and Mechanical Properties of a Solid-State Additive Manufactured Magnesium Alloy. J. Manuf. Sci. Eng. 2022, 144, 061013. [Google Scholar] [CrossRef]
- Priedeman, J.L.; Phillips, B.J.; Lopez, J.J.; Roper, B.E.T.; Hornbuckle, B.C.; Darling, K.A.; Jordon, J.B.; Allison, P.G.; Thompson, G.B. Microstructure Development in Additive Friction Stir-Deposited Cu. Metals 2020, 10, 1538. [Google Scholar] [CrossRef]
- Jordon, J.B.; Allison, P.G.; Phillips, B.J.; Avery, D.Z.; Kinser, R.P.; Brewer, L.N.; Cox, C.; Doherty, K. Direct Recycling of Machine Chips Through a Novel Solid-State Additive Manufacturing Process. Mater. Des. 2020, 193, 108850. [Google Scholar] [CrossRef]
- Shao, J.; Samaei, A.; Xue, T.; Xie, X.; Guo, S.; Cao, J.; MacDonald, E.; Gan, Z. Additive friction stir deposition of metallic materials: Process, structure and properties. Mater. Des. 2023, 234, 112356. [Google Scholar] [CrossRef]
- Schröder, J.; Evans, A.; Luzin, V.; Faria, G.A.; Degener, S.; Polatidis, E.; Čapek, J.; Kromm, A.; Dovzhenko, G.; Bruno, G. Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts. J. Appl. Crystallogr. 2023, 56, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Szost, B.A.; Terzi, S.; Martina, F.; Boisselier, D.; Prytuliak, A.; Pirling, T.; Hofmann, M.; Jarvis, D.J. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater. Des. 2016, 89, 559–567. [Google Scholar] [CrossRef]
- Yakubov, V.; Ostergaard, H.; Hughes, J.; Yasa, E.; Karpenko, M.; Proust, G.; Paradowska, A.M. Evolution of Material Properties and Residual Stress with Increasing Number of Passes in Aluminium Structure Printed via Additive Friction Stir Deposition. Materials 2024, 17, 3457. [Google Scholar] [CrossRef]
- Zhu, N.; Avery, D.Z.; Chen, Y.; An, K.; Jordon, J.B.; Allison, P.G.; Brewer, L.N. Residual Stress Distributions in AA6061 Material Produced by Additive Friction Stir Deposition. J. Mater. Eng. Perform. 2023, 32, 5535–5544. [Google Scholar] [CrossRef]
- Yu, H.Z.; Jones, M.E.; Brady, G.W.; Griffiths, R.J.; Garcia, D.; Rauch, H.A.; Cox, C.D.; Hardwick, N. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr. Mater. 2018, 153, 122–130. [Google Scholar] [CrossRef]
- Tang, W.; Yang, X.; Tian, C.; Gu, C. Effect of rotation speed on microstructure and mechanical anisotropy of Al-5083 alloy builds fabricated by friction extrusion additive manufacturing. Mater. Sci. Eng. A 2022, 860, 144237. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Cahalan, L.P.; Williams, M.B.; Brewer, L.N.; McDonnell, M.M.; Kelly, M.R.; Lalonde, A.D.; Allison, P.G.; Jordon, J.B. Parametric Investigation of Parallel Deposition Passes on the Microstructure and Mechanical Properties of 7075 Aluminum Alloy Processed with Additive Friction Stir Deposition. Appl. Sci. 2024, 14, 457. [Google Scholar] [CrossRef]
- Hahn, G.D.; Knight, K.P.; Gotawala, N.; Hang, Z.Y. Additive Friction Stir Deposition of AA7050 Achieving Forging-Like Tensile Properties. Mater. Sci. Eng. A 2024, 896, 146268. [Google Scholar] [CrossRef]
- Anderson-Wedge, K.; Avery, D.Z.; Daniewicz, S.R.; Sowards, J.W.; Allison, P.G.; Jordon, J.B.; Amaro, R.L. Characterization of the fatigue behavior of additive friction stir-deposition AA2219. Int. J. Fatigue 2021, 142, 105951. [Google Scholar] [CrossRef]
- Gumaste, A.; Dhal, A.; Agrawal, P.; Haridas, R.S.; Vasudevan, V.K.; Weiss, D.; Mishra, R.S. A Novel Approach for Enhanced Mechanical Properties in Solid-State Additive Manufacturing by Additive Friction Stir Deposition Using Thermally Stable Al-Ce-Mg Alloy. JOM 2023, 75, 4185–4198. [Google Scholar] [CrossRef]
- Beladi, H.; Farabi, E.; Hodgson, P.D.; Barnett, M.R.; Rohrer, G.S.; Fabijanic, D. Microstructure evolution of 316L stainless steel during solid-state additive friction stir deposition. Philos. Mag. 2021, 102, 618–633. [Google Scholar] [CrossRef]
- Mishra, D.; Gupta, A.; Raj, P.; Kumar, A.; Anwer, S.; Pal, S.K.; Chakravarty, D.; Pal, S.; Chakravarty, T.; Pal, A.; et al. Real time monitoring and control of friction stir welding process using multiple sensors. CIRP J. Manuf. Sci. Technol. 2020, 30, 1–11. [Google Scholar] [CrossRef]
- Everton, S.K.; Hirsch, M.; Stravroulakis, P.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [Google Scholar] [CrossRef]
- Liu, X.C.; Sun, Y.F.; Nagira, T.; Ushioda, K.; Fujii, H. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci. Technol. Weld. Join. 2019, 24, 352–359. [Google Scholar] [CrossRef]
- Chaudhary, B.; Jain, N.K.; Murugesan, J.; Patel, V. Exploring temperature-controlled friction stir powder additive manufacturing process for multi-layer deposition of aluminum alloys. J. Mater. Res. Technol. 2022, 20, 260–268. [Google Scholar] [CrossRef]
- Chaudhary, B.; Patel, V.; Ramkumar, P.L.; Vora, J. Temperature Distribution During Friction Stir Welding of AA2014 Aluminum Alloy: Experimental and Statistical Analysis. Trans. Indian Inst. Met. 2019, 72, 969–981. [Google Scholar] [CrossRef]
- Assidi, M.; Fourment, L.; Guerdoux, S.; Nelson, T. Friction Model for Friction Stir Welding Process Simulation: Calibrations from Welding Experiments. Int. J. Mach. Tools Manuf. 2010, 50, 143–155. [Google Scholar] [CrossRef]
- Swaminathan, S.; Oh-Ishi, K.; Zhilyaev, A.P.; Fuller, C.B.; London, B.; Mahoney, M.W.; McNelley, T.R. Peak Stir Zone Temperatures during Friction Stir Processing. Met. Mater. Trans. A 2010, 41, 631–640. [Google Scholar] [CrossRef]
- Gerlich, A.; Avramovic-Cingara, G.; North, T.H. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding. Met. Mater. Trans. A 2006, 37, 2773–2786. [Google Scholar] [CrossRef]
- Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Yakubov, V.; Ostergaard, H.; Bhagavath, S.; Leung, C.L.A.; Hughes, J.; Yasa, E.; Khezri, M.; Loschke, S.K.; Li, Q.; Paradowska, A.M. Hardness distribution and defect formation in aluminium alloys fabricated via additive friction stir deposition (AFSD). In Proceedings of the 11th Australasian Congress on Applied Mechanics (ACAM2024), Brisbane, Australia, 7–9 February 2024. [Google Scholar]
- Escobar, R., Jr.; Fraser, K.; Jordon, J.B.; Alison, P.G. Meshfree Simulation of Oxide Dispersion in Meld of Aluminum Alloys. In Proceedings of the 12th International Symposium on Friction Stir Welding, Saguenay, QC, Canada, 26–28 June 2018. [Google Scholar]
- Zhang, Z.; Tan, Z.-J.; Li, J.-Y.; Zu, Y.-F.; Sha, J.-J. Integrated Modeling of Process–Microstructure–Property Relations in Friction Stir Additive Manufacturing. Acta Met. Sin. (Engl. Lett.) 2020, 33, 75–87. [Google Scholar] [CrossRef]
- Shi, T.; Wu, J.; Ma, M.; Charles, E.; Schmitz, T. AFSD-Nets: A Physics-informed Machine Learning Model for Predicting the Temperature Evolution During Additive Friction Stir Deposition. J. Manuf. Sci. Eng. 2024, 146, 081003. [Google Scholar] [CrossRef]
- Frigaard, Ø.; Grong, Ø.; Midling, O.T. A process model for friction stir welding of age hardening aluminum alloys. Met. Mater. Trans. A 2001, 32, 1189–1200. [Google Scholar] [CrossRef]
- Coegrove, P. 3-Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process. Doctoral Dissertation, University of Adelaide, Adelaide, Australia, 2001. [Google Scholar]
- Song, M.; Kovacevic, R. Heat transfer modelling for both workpiece and tool in the friction stir welding process: A coupled model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 17–33. [Google Scholar] [CrossRef]
- Liechty, B.; Webb, B. Modeling the frictional boundary condition in friction stir welding. Int. J. Mach. Tools Manuf. 2008, 48, 1474–1485. [Google Scholar] [CrossRef]
- Guerdoux, S. Numerical Simulation of The Friction Stir Welding Process. Doctoral Dissertation, École Nationale Supérieure des Mines de Paris, Paris, France, 2007. [Google Scholar]
- Heuzéa, T.; Leblond, J.B.; Bergheau, J.M. Modelling of Fluid/Solid Couplings in High Temperature Assembly Processes: Application to The Friction Stir Spot Welding. In Proceedings of the 2nd International Conference on Friction Stir Welding and Processing (FSWP 2012), Saint-Etienne, France, 26–27 January 2012. [Google Scholar]
- Avery, D.Z.; Phillips, B.J.; Mason, C.J.T.; Palermo, M.; Williams, M.B.; Cleek, C.; Rodriguez, O.L.; Allison, P.G.; Jordon, J.B. Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy. Met. Mater. Trans. A 2020, 51, 2778–2795. [Google Scholar] [CrossRef]
- Rivera, O.G.; Allison, P.G.; Brewer, L.N.; Rodriguez, O.L.; Jordon, J.B.; Liu, T.; Whittington, W.R.; Martens, L.R.; McClelland, Z.; Mason, C.J.T.; et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater. Sci. Eng. A 2018, 724, 547–558. [Google Scholar] [CrossRef]
- Beck, S.C.; Rutherford, B.A.; Avery, D.Z.; Phillips, B.J.; Rao, H.; Rekha, M.Y.; Brewer, L.N.; Allison, P.G.; Jordon, J.B. The effect of solutionizing and artificial aging on the microstructure and mechanical properties in solid-state additive manufacturing of precipitation hardened Al–Mg–Si alloy. Mater. Sci. Eng. A 2021, 819, 141351. [Google Scholar] [CrossRef]
- Phillips, B.J.; Avery, D.Z.; Liu, T.; Rodriguez, O.L.; Mason, C.J.T.; Jordon, J.B.; Brewer, L.N.; Allison, P.G. Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si. Materialia 2019, 7, 100387. [Google Scholar] [CrossRef]
- Pariyar, A.; Yasa, E.; Sharman, A.; Guan, D. Investigations on the Solid-State Additive Manufacturing of Al Alloy: Process, Microstructure, and Crystallographic Texture. In Light Metals 2024. TMS 2024; Wagstaff, S., Ed.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Phillips, B.J.; Mason CJ, T.; Beck, S.C.; Avery, D.Z.; Doherty, K.J.; Allison, P.G.; Jordon, J.B. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition. J. Mech. Work. Technol. 2021, 295, 117169. [Google Scholar] [CrossRef]
- Mason, C.J.T.; Rodriguez, R.I.; Avery, D.Z.; Phillips, B.J.; Bernarding, B.P.; Williams, M.B.; Allison, P.G. Process-Structure-Property Relations for As-Deposited Solid-State Additively Manufactured High-Strength Aluminum Alloy. Addit. Manuf. 2021, 40, 101879. [Google Scholar] [CrossRef]
- Lopez, J.J.; Williams, M.B.; Rushing, T.W.; Confer, M.P.; Ghosh, A.; Griggs, C.S.; Jordon, J.B.; Thompson, G.B.; Allison, P.G. A solid-state additive manufacturing method for aluminum-graphene nanoplatelet composites. Materialia 2022, 23, 101440. [Google Scholar] [CrossRef]
- Lopez, J.J.; Williams, M.B.; Rushing, T.W.; Bikmukhametov, I.; Jordon, J.B.; Allison, P.G.; Thompson, G.B. Solid-state additive manufacturing of dispersion strengthened aluminum with graphene nanoplatelets. Mater. Sci. Eng. A 2024, 893, 146148. [Google Scholar] [CrossRef]
- Yoder, J.K.; Erb, D.J.; Henderson, R.; Hang, Z.Y. Closed-loop temperature controlled solid-state additive manufacturing of Ti-6Al-4V with forging standard out-of-plane tensile properties. J. Mater. Process. Technol. 2023, 322, 118201. [Google Scholar] [CrossRef]
Alloy Group | Alloy | Layer Height (mm) | Spindle Speed (rpm) | Traverse Speed (mm/min) | Actuator Speed (mm/min) | Deposition Ratio | Feedstock Size (mm) | Tool Type | Ref. |
---|---|---|---|---|---|---|---|---|---|
Aluminium | AA6061 | 2 | 300 | 152.4 | 127 | 1.20 | 9.5 | Protrusions 2 mm | [24] |
AA7075 | 1 | 275 | 127 | 69.9 | 1.82 | 9.5 | Protrusions 2 mm | [57] | |
AA7050 | 2.75 | 350 | 76.2 | 76.2 | 1.00 | 9.5 | Flat | [58] | |
AA2019 | 1 | 200 | 101.6 | 88.9 | 1.14 | 9.5 | Protrusions | [59] | |
AA2024 | 1 | 300 | 120 | 51 | 2.35 | Protrusions 1.5 mm | [32] | ||
Al-8Ce-10 Mg | 1 | 250 | 254 | 152.4 | 1.67 | 9.5 | Protrusions 2 mm | [60] | |
Steel | AISI 316 | 0.5 | 400 | 253.8 | 25.2 | 10.07 | 9.5 | Flat | [27] |
AISI 316L | 0.5 | 440 | 2.5 | 25 | 0.10 | 10 | Not given | [61] | |
Titanium | Ti6Al4V | 0.5 | 400 | 202.8 | 89.4 | 2.27 | Not given | Not given | [41] |
Nickel | Inconel 625 | 0.5 | 600 | 76.2 | 16.2 | 4.70 | 9.5 | Flat | [38] |
Magnesium | WE43 | 1 | 325 | 152.4 | 63.5 | 2.40 | 9.5 | Protrusions 2 mm | [42] |
GW83K | ~2.4 | 300 | 100 | Force Controlled (10 kN) | 20 | Protrusions 2.5 mm | [43] |
Sample No. | Number of Layers | Average Track Width (mm) | Average Power (kW) | Tool Rotational Rate (ω, rpm) | Traverse Speed (V, mm per min.) | Filler Rate (F, mm per min.) |
---|---|---|---|---|---|---|
B1 | 19 | 30.48 | 3.99 | 340 | 127 | 44.70 |
B2 | 39 | 35.56 | 5.59 | 325 | 86.36 | 40.39 |
B3 | 23 | 45.72 | 7.10 | 350 | 78.74 | 41.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasa, E.; Poyraz, O.; Molyneux, A.; Sharman, A.; Bilgin, G.M.; Hughes, J. Systematic Review on Additive Friction Stir Deposition: Materials, Processes, Monitoring and Modelling. Inventions 2024, 9, 116. https://doi.org/10.3390/inventions9060116
Yasa E, Poyraz O, Molyneux A, Sharman A, Bilgin GM, Hughes J. Systematic Review on Additive Friction Stir Deposition: Materials, Processes, Monitoring and Modelling. Inventions. 2024; 9(6):116. https://doi.org/10.3390/inventions9060116
Chicago/Turabian StyleYasa, Evren, Ozgur Poyraz, Anthony Molyneux, Adrian Sharman, Guney Mert Bilgin, and James Hughes. 2024. "Systematic Review on Additive Friction Stir Deposition: Materials, Processes, Monitoring and Modelling" Inventions 9, no. 6: 116. https://doi.org/10.3390/inventions9060116
APA StyleYasa, E., Poyraz, O., Molyneux, A., Sharman, A., Bilgin, G. M., & Hughes, J. (2024). Systematic Review on Additive Friction Stir Deposition: Materials, Processes, Monitoring and Modelling. Inventions, 9(6), 116. https://doi.org/10.3390/inventions9060116