Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pre-Test Session and Exercise Description
2.3. Data Collection
2.4. Data Reduction
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marchetti, P.H.; Guiselini, M.A.; da Silva, J.J.; Tucker, R.; Behm, D.G.; Brown, L.E. Balance and Lower Limb Muscle Activation between In-Line and Traditional Lunge Exercises. J. Hum. Kinet. 2018, 62, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Riemann, B.; Congleton, A.; Ward, R.; Davies, G.J. Biomechanical comparison of forward and lateral lunges at varying step lengths. J. Sports Med. Phys. Fitness 2013, 53, 130–138. [Google Scholar] [PubMed]
- Riemann, B.L.; Lapinski, S.; Smith, L.; Davies, G. Biomechanical analysis of the anterior lunge during 4 external-load conditions. J. Athl. Train. 2012, 47, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Schutz, P.; List, R.; Zemp, R.; Schellenberg, F.; Taylor, W.R.; Lorenzetti, S. Joint angles of the ankle, knee, and hip and loading conditions during split squats. J. Appl. Biomech. 2014, 30, 373–380. [Google Scholar] [CrossRef]
- Keogh, J. Lower-body resistance training: Increasing functional performance with lunges. Strength Cond. J. 1999, 21, 67–72. [Google Scholar] [CrossRef]
- Jonhagen, S.; Ackermann, P.; Saartok, T. Forward lunge: A training study of eccentric exercises of the lower limbs. J. Strength Cond. Res. 2009, 23, 972–978. [Google Scholar] [CrossRef]
- Boling, M.C.; Bolgla, L.A.; Mattacola, C.G.; Uhl, T.L.; Hosey, R.G. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch. Phys. Med. Rehabil. 2006, 87, 1428–1435. [Google Scholar] [CrossRef]
- Heintjes, E.; Berger, M.Y.; Bierma-Zeinstra, S.M.; Bernsen, R.M.; Verhaar, J.A.; Koes, B.W. Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst. Rev. 1996, 2010, CD003472. [Google Scholar]
- Natri, A.; Kannus, P.; Jarvinen, M. Which factors predict the long-term outcome in chronic patellofemoral pain syndrome? A 7-yr prospective follow-up study. Med. Sci. Sports Exerc. 1998, 30, 1572–1577. [Google Scholar]
- Witvrouw, E.; Danneels, L.; Van Tiggelen, D.; Willems, T.M.; Cambier, D. Open versus closed kinetic chain exercises in patellofemoral pain: A 5-year prospective randomized study. Am. J. Sports Med. 2004, 32, 1122–1130. [Google Scholar] [CrossRef]
- Witvrouw, E.; Lysens, R.; Bellemans, J.; Peers, K.; Vanderstraeten, G. Open versus closed kinetic chain exercises for patellofemoral pain: A prospective, randomized study. Am. J. Sports Med. 2000, 28, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Petushek, E.J.; Sugimoto, D.; Stoolmiller, M.; Smith, G.; Myer, G.D. Evidence-Based Best-Practice Guidelines for Preventing Anterior Cruciate Ligament Injuries in Young Female Athletes: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2019, 47, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.P.; Wang, M.Y.; Greendale, G.A.; Azen, S.P.; Salem, G.J. Biomechanical attributes of lunging activities for older adults. J. Strength Cond. Res. 2004, 18, 599–605. [Google Scholar] [PubMed]
- Muyor, J.M.; Martin-Fuentes, I.; Rodriguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Zheng, N.; Macleod, T.D.; Edwards, W.B.; Hreljac, A.; Fleisig, G.S.; Wilk, K.E.; Moorman, C.T.; Imamura, R.; Andrews, J.R. Patellofemoral joint force and stress between a short- and long-step forward lunge. J. Orthop. Sports Phys. Ther. 2008, 38, 681–690. [Google Scholar] [CrossRef]
- Bezerra, E.S.; Diefenthaeler, F.; Nunes, J.P.; Sakugawa, R.L.; Heberle, I.; Moura, B.M.; Moro, A.R.; Marcolin, G.; Paoli, A. Influence of Trunk Position during Three Lunge Exercises on Muscular Activation in Trained Women. Int. J. Exerc. Sci. 2021, 14, 202–210. [Google Scholar]
- Farrokhi, S.; Pollard, C.D.; Souza, R.B.; Chen, Y.J.; Reischl, S.; Powers, C.M. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J. Orthop. Sports Phys. Ther. 2008, 38, 403–409. [Google Scholar] [CrossRef]
- Jonhagen, S.; Halvorsen, K.; Benoit, D.L. Muscle activation and length changes during two lunge exercises: Implications for rehabilitation. Scand. J. Med. Sci. Sports 2009, 19, 561–568. [Google Scholar] [CrossRef]
- Stastny, P.; Lehnert, M.; Zaatar, A.M.; Svoboda, Z.; Xaverova, Z. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges? J. Strength. Cond. Res. 2015, 29, 3177–3187. [Google Scholar] [CrossRef]
- Sundstrup, E.; Jakobsen, M.D.; Andersen, C.H.; Bandholm, T.; Thorborg, K.; Zebis, M.K.; Andersen, L.L. Evaluation of elastic bands for lower extremity resistance training in adults with and without musculo-skeletal pain. Scand. J. Med. Sci. Sports 2014, 24, e353–e359. [Google Scholar] [CrossRef]
- Wu, H.W.; Tsai, C.F.; Liang, K.H.; Chang, Y.W. Effect of Loading Devices on Muscle Activation in Squat and Lunge. J. Sport Rehabil. 2020, 29, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, L.E.; Hofener, M.; O’Donnel, A.; Milligan, A.; Obrock, C. Comparison of Muscle Activity Using Unstable Devices During a Forward Lunge. J. Sport Rehabil. 2020, 29, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, L.E.; Wilhelm, J.; Eisel, P.; Wiesner, J.; Rachow, M.; Hatteberg, L. Electromyographic assessment of muscle activity between genders during unilateral weight-bearing tasks using adjusted distances. Int. J. Sports Phys. Ther. 2012, 7, 595–605. [Google Scholar] [PubMed]
- Krause, D.A.; Elliott, J.J.; Fraboni, D.F.; McWilliams, T.J.; Rebhan, R.L.; Hollman, J.H. Electromyography of the Hip and Thigh Muscles during Two Variations of the Lunge Exercise: A Cross-Sectional Study. Int. J. Sports Phys. Ther. 2018, 13, 137–142. [Google Scholar] [CrossRef]
- Munoz-Martel, V.; Santuz, A.; Bohm, S.; Arampatzis, A. Neuromechanics of Dynamic Balance Tasks in the Presence of Perturbations. Front. Hum. Neurosci. 2020, 14, 560630. [Google Scholar] [CrossRef]
- Wahl, M.J.; Behm, D.G. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J. Strength Cond. Res. 2008, 22, 1360–1370. [Google Scholar] [CrossRef]
- Balady, G.; Berra, K.; Golding, L. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2000. [Google Scholar]
- Basmajian, J.; Blumenstein, R. Electrode Placement in EMG Biofeedback; Williams and Wilkins: Baltimore, MD, USA, 1980. [Google Scholar]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Barrentine, S.W.; Wilk, K.E.; Andrews, J.R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med. Sci. Sports Exerc. 1998, 30, 556–569. [Google Scholar] [CrossRef]
- Alkjaer, T.; Simonsen, E.B.; Magnusson, S.P.; Aagaard, H.; Dyhre-Poulsen, P. Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: Copers and non-copers. Clin. Biomech. 2002, 17, 586–593. [Google Scholar] [CrossRef]
- Begalle, R.L.; Distefano, L.J.; Blackburn, T.; Padua, D.A. Quadriceps and hamstrings coactivation during common therapeutic exercises. J. Athl. Train. 2012, 47, 396–405. [Google Scholar] [CrossRef]
- Boudreau, S.N.; Dwyer, M.K.; Mattacola, C.G.; Lattermann, C.; Uhl, T.L.; McKeon, J.M. Hip-muscle activation during the lunge, single-leg squat, and step-up-and-over exercises. J. Sport Rehabil. 2009, 18, 91–103. [Google Scholar] [CrossRef]
- Brenneman, E.C.; Kuntz, A.B.; Wiebenga, E.G.; Maly, M.R. Does pain relate with activation of quadriceps and hamstrings muscles during strengthening exercise in people with knee osteoarthritis? Springerplus 2016, 5, 463. [Google Scholar] [CrossRef] [PubMed]
- Connelly, C.M.; Moran, M.F.; Grimes, J.K. Comparative Analysis of Hip Muscle Activation during Closed-Chain Rehabilitation Exercises in Runners. Int. J. Sports Phys. Ther. 2020, 15, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.K.; Boudreau, S.N.; Mattacola, C.G.; Uhl, T.L.; Lattermann, C. Comparison of lower extremity kinematics and hip muscle activation during rehabilitation tasks between sexes. J. Athl. Train. 2010, 45, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Feldmann, C.R.; Dayne, A.; Mitsche, D.; Alexander, P.; Knetzger, K.J. Muscle activation during lower body resistance training. Int. J. Sports Med. 2009, 30, 1–8. [Google Scholar] [CrossRef]
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef]
- Glaviano, N.R.; Saliba, S. Differences in Gluteal and Quadriceps Muscle Activation During Weight-Bearing Exercises Between Female Subjects with and Without Patellofemoral Pain. J. Strength Cond. Res. 2022, 36, 55–62. [Google Scholar] [CrossRef]
- Harput, G.; Calik, M.; Erdem, M.M.; Cigercioglu, N.; Gunduz, S.; Cinar, N. The effects of enhanced abdominal activation on quadriceps muscle activity levels during selected unilateral lower extremity exercises. Hum. Mov. Sci. 2020, 70, 102597. [Google Scholar] [CrossRef]
- Harput, G.; Soylu, A.R.; Ertan, H.; Ergun, N.; Mattacola, C.G. Effect of gender on the quadriceps-to-hamstrings coactivation ratio during different exercises. J. Sport Rehabil. 2014, 23, 36–43. [Google Scholar] [CrossRef]
- Henriksen, M.; Alkjaer, T.; Simonsen, E.B.; Bliddal, H. Experimental muscle pain during a forward lunge—The effects on knee joint dynamics and electromyographic activity. Br. J. Sports Med. 2009, 43, 503–507. [Google Scholar] [CrossRef]
- Irish, S.E.; Millward, A.J.; Wride, J.; Haas, B.M.; Shum, G.L. The effect of closed-kinetic chain exercises and open-kinetic chain exercise on the muscle activity of vastus medialis oblique and vastus lateralis. J. Strength Cond. Res. 2010, 24, 1256–1262. [Google Scholar] [CrossRef]
- Jakobsen, M.D.; Sundstrup, E.; Andersen, C.H.; Aagaard, P.; Andersen, L.L. Muscle activity during leg strengthening exercise using free weights and elastic resistance: Effects of ballistic vs controlled contractions. Hum. Mov. Sci. 2013, 32, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.; Farahmand, F.; Rezaeian, T.; Ramsey, D.K.; Mousavi, S.M. Electromyographic analysis of anterior cruciate deficient knees with and without functional bracing during lunge exercise. Prosthet. Orthot. Int. 2016, 40, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Khaiyat, O.A.; Norris, J. Electromyographic activity of selected trunk, core, and thigh muscles in commonly used exercises for ACL rehabilitation. J. Phys. Ther. Sci. 2018, 30, 642–648. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, J.K.; Hwang, J.H.; Kim, C.M.; Park, J.W. Differences of quadriceps activity during inline lunge by using FMS assessment. J. Phys. Ther. Sci. 2021, 33, 142–145. [Google Scholar] [CrossRef]
- Lin, C.Y.; Tsai, L.C.; Press, J.; Ren, Y.; Chung, S.G.; Zhang, L.Q. Lower-Limb Muscle-Activation Patterns During Off-Axis Elliptical Compared with Conventional Gluteal-Muscle-Strengthening Exercises. J. Sport Rehabil. 2016, 25, 164–172. [Google Scholar] [CrossRef]
- Lopez-de-Celis, C.; Sanchez-Alfonso, N.; Rodriguez-Sanz, J.; Romaní-Sánchez, S.; Labata-Lezaun, N.; Canet-Vintró, M.; Aiguadé, R.; Pérez-Bellmunt, A. Quadriceps and gluteus medius activity during stable and unstable loading exercises in athletes. A cross-sectional study. J. Orthop. Res. 2024, 42, 317–325. [Google Scholar]
- Paz, G.A.; Almeida, L.; Ruiz, L.; Casseres, S.; Xavier, G.; Lucas, J.; Santana, H.G.; Miranda, H.; Bonnette, S.; Willardson, J. Myoelectric Responses of Lower-Body Muscles Performing Squat and Lunge Exercise Variations Adopting Visual Feedback with a Laser Sensor. J. Sport Rehabil. 2020, 29, 1159–1165. [Google Scholar] [CrossRef]
- Pereira, N.D.S.; Chaffe, L.P.; Marques, M.I.; Guimarães, R.F.; Geremia, J.M.; Vaz, M.A.; Baroni, B.M.; Rodrigues, R. Reverse Nordic Curl Does Not Generate Superior Eccentric Activation of the Quadriceps Muscle Than Bodyweight Squat-Based Exercises. J. Sport Rehabil. 2024, 33, 646–653. [Google Scholar] [CrossRef]
- Pincivero, D.M.; Aldworth, C.; Dickerson, T.; Petry, C.; Shultz, T. Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue. Eur. J. Appl. Physiol. 2000, 81, 504–509. [Google Scholar] [CrossRef]
- Stuart, M.J.; Meglan, D.A.; Lutz, G.E.; Growney, E.S.; An, K.N. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. Am. J. Sports Med. 1996, 24, 792–799. [Google Scholar] [CrossRef]
- Wezenbeek, E.; Verhaeghe, L.; Laveyne, K.; Ravelingien, L.; Witvrouw, E.; Schuermans, J. The Effect of Aquabag Use on Muscle Activation in Functional Strength Training. J. Sport Rehabil. 2022, 31, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Distefano, L.J.; Blackburn, J.T.; Marshall, S.W.; Padua, D.A. Gluteal muscle activation during common therapeutic exercises. J. Orthop. Sports Phys. Ther. 2009, 39, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Magnusson, S.P.; Nielsen, M.; Haleem, J.; Poulsen, K.; Aagaard, P. Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: Implications for rehabilitation. Phys. Ther. 2006, 86, 683–697. [Google Scholar] [CrossRef]
- Ayotte, N.W.; Stetts, D.M.; Keenan, G.; Greenway, E.H. Electromyographical analysis of selected lower extremity muscles during 5 unilateral weight-bearing exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 48–55. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Lewis, C.; Bell, D.; Bramblet, G.; Daffron, J.; Lambert, S.; Pecson, A.; Imamura, R.; Paulos, L.; Andrews, J.R. Core muscle activation during Swiss ball and traditional abdominal exercises. J. Orthop. Sports Phys. Ther. 2010, 40, 265–276. [Google Scholar] [CrossRef]
- Reiman, M.P.; Bolgla, L.A.; Loudon, J.K. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises. Physiother. Theory Pract. 2012, 28, 257–268. [Google Scholar] [CrossRef]
Step Length Variations | Stride Variations | |||||||
---|---|---|---|---|---|---|---|---|
Normalized EMG (%MVIC) for Lunge Descent (0–90°) | Long Step | Short Step | p-Value | Effect Size Partial Eta Squared ηp2 | With Stride | Without Stride | p-Value | Effect Size Partial Eta Squared ηp2 |
Vastus Medialis | 39 ± 13 | 33 ± 11 | 0.008 * | 0.203 | 36 ± 13 | 36 ± 12 | 0.583 | 0.071 |
Vastus Lateralis | 40 ± 15 | 31 ± 11 | <0.001 * | 0.440 | 36 ± 16 | 35 ± 11 | 0.870 | 0.062 |
Rectus Femoris | 21 ± 11 | 20 ± 10 | 0.201 | 0.083 | 21 ± 11 | 20 ± 10 | 0.399 | 0.075 |
Semitendinosus | 22 ± 10 | 13 ± 7 | <0.001 * | 0.693 | 18 ± 10 | 16 ± 10 | 0.175 | 0.121 |
Biceps Femoris | 18 ± 10 | 8 ± 6 | <0.001 * | 0.746 | 13 ± 10 | 14 ± 10 | 0.226 | 0.136 |
Gastrocnemius | 26 ± 13 | 15 ± 7 | <0.001 * | 0.760 | 22 ± 13 | 19 ± 11 | 0.068 | 0.203 |
Gluteus Maximus | 23 ± 12 | 17 ± 11 | <0.001 * | 0.808 | 18 ± 11 | 22 ± 12 | 0.009 * | 0.596 |
Normalized EMG (%MVIC) for Lunge Ascent (90–0°) | ||||||||
Adductor Longus | 32 ± 16 | 25 ± 15 | 0.002 * | 0.571 | 32 ± 16 | 25 ± 15 | 0.078 | 0.561 |
Gluteus Maximus | 53 ± 25 | 60 ± 29 | 0.457 | 0.130 | 64 ± 28 | 48 ± 23 | <0.001 * | 0.780 |
Gluteus Medius | 26 ± 14 | 22 ± 10 | 0.140 | 0.867 | 27 ± 14 | 20 ± 10 | <0.001 * | 0.918 |
Step Length and Stride Variations | Normalized EMG (%MVIC) for Lunge Descent (0–90°) | Normalized EMG (%MVIC) for Lunge Ascent (90–0°) | ||||||
---|---|---|---|---|---|---|---|---|
Adductor Longus | Gluteus Medius | Vastus Medialis | Vastus Lateralis | Rectus Femoris | Semitendinosus | Biceps Femoris | Gastrocnemius | |
Long Step with Stride | 33 ± 15 * | 21 ± 8 | 97 ± 29 * | 99 ± 35 * | 66 ± 28 * | 27 ± 17 * | 31 ± 17 * | 29 ± 16 * |
Long Step Without Stride | 21 ± 11 * | 21 ± 9 | 62 ± 19 * | 63 ± 20 * | 32 ± 11 * | 21 ± 10 * | 23 ± 11 * | 20 ± 11 * |
Short Step with Stride | 14 ± 7 | 13 ± 9 | 84 ± 29 | 88 ± 30 * | 65 ± 30 * | 16 ± 12 | 16 ± 11 | 21 ± 11 |
Short Step Without Stride | 10 ± 5 | 15 ± 11 | 76 ± 23 | 75 ± 23 * | 48 ± 15 * | 14 ± 7 | 16 ± 8 | 19 ± 9 |
Long Step with Stride | 33 ± 15 * | 21 ± 8 * | 97 ± 29 * | 99 ± 35 * | 66 ± 28 | 27 ± 17 * | 31 ± 17 * | 29 ± 16 * |
Short Step with Stride | 14 ± 7 * | 13 ± 9 * | 84 ± 29 * | 88 ± 30 * | 65 ± 30 | 16 ± 12 * | 16 ± 11 * | 21 ± 11 * |
Long Step Without Stride | 21 ± 11 * | 21 ± 9 * | 62 ± 19 * | 63 ± 20 * | 32 ± 11 * | 21 ± 10 * | 23 ± 11 * | 20 ± 11 |
Short Step Without Stride | 10 ± 5 * | 15 ± 11 * | 76 ± 23 * | 75 ± 23 * | 48 ± 15 * | 14 ± 7 * | 16 ± 8 * | 19 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escamilla, R.F.; Thompson, I.S.; Asuncion, R.; Bravo, J.; Chang, T.; Fournier, T.; Garcia, H.; Hockenbery, E.; Nagasawa, K.; Ozor, J.; et al. Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity. J. Funct. Morphol. Kinesiol. 2025, 10, 42. https://doi.org/10.3390/jfmk10010042
Escamilla RF, Thompson IS, Asuncion R, Bravo J, Chang T, Fournier T, Garcia H, Hockenbery E, Nagasawa K, Ozor J, et al. Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity. Journal of Functional Morphology and Kinesiology. 2025; 10(1):42. https://doi.org/10.3390/jfmk10010042
Chicago/Turabian StyleEscamilla, Rafael F., Irwin S. Thompson, Robert Asuncion, Jacqueline Bravo, Tiffany Chang, Taylor Fournier, Hannah Garcia, Emily Hockenbery, Kyle Nagasawa, Joan Ozor, and et al. 2025. "Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity" Journal of Functional Morphology and Kinesiology 10, no. 1: 42. https://doi.org/10.3390/jfmk10010042
APA StyleEscamilla, R. F., Thompson, I. S., Asuncion, R., Bravo, J., Chang, T., Fournier, T., Garcia, H., Hockenbery, E., Nagasawa, K., Ozor, J., Snoeberger, H., Wilk, K. E., & Bizzini, M. (2025). Effects of Step Length and Stride Variation During Forward Lunges on Lower-Extremity Muscle Activity. Journal of Functional Morphology and Kinesiology, 10(1), 42. https://doi.org/10.3390/jfmk10010042