Sport Experience and Physical Activity: Event-Related Brain Potential and Task Performance Indices of Attention in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sport Experience and Physical Activity
2.3. Auditory Oddball Task
2.4. Experimental Procedure
2.5. Event-Related Potential Recording
2.6. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. RT
3.3. ERP Analysis
3.3.1. P3 Amplitude
3.3.2. P3 Latency
3.4. The Relationship Between P3, RT, and Physical Activity
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pedroso, R.V.; Fraga, F.J.; Ayan, C.; Cancela Carral, J.M.; Scarpari, L.; Santos-Galduroz, R.F. Effects of physical activity on the P300 component in elderly people: A systematic review. Psychogeriatrics 2017, 17, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Drollette, E.S. Physical Activity for the Brain, but for Whom? An Individual Difference Investigation of the FITKids Clinical Trial on Cognitive Control and ERPs in Children. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2016. [Google Scholar]
- Guiney, H.; Machado, L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 2013, 20, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Vivar, C.; Potter, M.C.; van Praag, H. All about running: Synaptic plasticity, growth factors and adult hippocampal neurogenesis. In Neurogenesis and Neural Plasticity; Springer: Berlin/Heidelberg, Germany, 2012; pp. 189–210. [Google Scholar]
- Voss, M.W.; Erickson, K.I.; Prakash, R.S.; Chaddock, L.; Kim, J.S.; Alves, H.; Szabo, A.; Phillips, S.M.; Wójcicki, T.R.; Mailey, E.L. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 2013, 28, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Zagrebelsky, M.; Korte, M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 2014, 76, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Deng, W.; Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Kamijo, K.; Scudder, M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev. Med. 2011, 52, S21–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [PubMed]
- Kamijo, K. Physical Activity, Fitness, and Cognition: Insights from Neuroelectric Studies. Exerc. -Cogn. Interact. Neurosci. Perspect. 2016, 211–226. [Google Scholar] [CrossRef]
- Hruby, T.; Marsalek, P. Event-related potentials-the P3 wave. Acta Neurobiol. Exp. 2002, 63, 55–63. [Google Scholar]
- Kropotov, J.D. Quantitative EEG, Event-Related Potentials and Neurotherapy; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Donchin, E.; Coles, M.G. Is the P300 component a manifestation of context updating? Behav. Brain Sci. 1988, 11, 357–374. [Google Scholar] [CrossRef]
- Lardon, M.T.; Polich, J. EEG changes from long-term physical exercise. Biol. Psychol. 1996, 44, 19–30. [Google Scholar] [CrossRef]
- Duncan-Johnson, C.C. P300 latency: A new metric of information processing. Psychophysiology 1981, 18, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pontifex, M.B.; Raine, L.B.; Johnson, C.R.; Chaddock, L.; Voss, M.W.; Cohen, N.J.; Kramer, A.F.; Hillman, C.H. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cogn. Neurosci. 2011, 23, 1332–1345. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Hillman, C.H.; Polich, J. Age, physical fitness, and attention: P3a and P3b. Psychophysiology 2009, 46, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-K.; Huang, C.-J.; Chen, K.-F.; Hung, T.-M. Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology 2013, 50, 1174–1182. [Google Scholar] [CrossRef]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev. Psychol. 2009, 45, 114. [Google Scholar] [CrossRef]
- Dustman, R.E.; Emmerson, R.Y.; Ruhling, R.; Shearer, D.; Steinhaus, L.; Johnson, S.; Bonekat, H.; Shigeoka, J. Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiol. Aging 1990, 11, 193–200. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Wrisberg, C.A. Motor Learning and Performance: A Situation-Based Learning Approach; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Kray, J.; Lindenberger, U. Adult age differences in task switching. Psychol. Aging 2000, 15, 126. [Google Scholar] [CrossRef]
- Dai, C.-T.; Chang, Y.-K.; Huang, C.-J.; Hung, T.-M. Exercise mode and executive function in older adults: An ERP study of task-switching. Brain Cogn. 2013, 83, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Banich, M.T. Executive function: The search for an integrated account. Curr. Dir. Psychol. Sci. 2009, 18, 89–94. [Google Scholar] [CrossRef]
- Monsell, S. Task switching. Trends Cogn. Sci. 2003, 7, 134–140. [Google Scholar] [CrossRef]
- Baddeley, A.; Chincotta, D.; Adlam, A. Working memory and the control of action: Evidence from task switching. J. Exp. Psychol. Gen. 2001, 130, 641. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.M.; Williams, H.G. Can Tai chi enhance cognitive vitality? A preliminary study of cognitive executive control in older adults after A Tai chi intervention. J. South Carol. Med. Assoc. (1975) 2008, 104, 255–257. [Google Scholar]
- Taylor-Piliae, R.E.; Newell, K.A.; Cherin, R.; Lee, M.J.; King, A.C.; Haskell, W.L. Effects of Tai Chi and Western exercise on physical and cognitive functioning in healthy community-dwelling older adults. J. Aging Phys. Act. 2010, 18, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Taddei, F.; Bultrini, A.; Spinelli, D.; Di Russo, F. Neural correlates of attentional and executive processing in middle-age fencers. Med. Sci. Sports Exerc. 2012, 44, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.S.; Wong, A.C.; Liu, Y.; Yu, J.; Yan, J.H. Fencing expertise and physical fitness enhance action inhibition. Psychol. Sport Exerc. 2011, 12, 509–514. [Google Scholar] [CrossRef]
- Murase, N. Validity and reliability of Japanese version of international physical activity questionnaire. J. Health Welf. Stat. 2002, 49, 1–9. [Google Scholar]
- Committee, I.R. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. 2005. Available online: http://www.ipaq.ki.se/scoring.pdf (accessed on 31 May 2019).
- Huang, C.-J.; Lin, P.-C.; Hung, C.-L.; Chang, Y.-K.; Hung, T.-M. Type of physical exercise and inhibitory function in older adults: An event-related potential study. Psychol. Sport Exerc. 2014, 15, 205–211. [Google Scholar] [CrossRef]
- Hillman, C.H.; Castelli, D.M.; Buck, S.M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sports Exerc. 2005, 37, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Fong, D.-Y.; Chi, L.-K.; Li, F.; Chang, Y.-K. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: An ERP study. Front. Aging Neurosci. 2014, 6, 295. [Google Scholar] [CrossRef] [PubMed]
- Kamijo, K.; Takeda, Y. Regular physical activity improves executive function during task switching in young adults. Int. J. Psychophysiol. 2010, 75, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Themanson, J.R.; Hillman, C.H.; Curtin, J.J. Age and physical activity influences on action monitoring during task switching. Neurobiol. Aging 2006, 27, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Kramer, A.F.; Belopolsky, A.V.; Smith, D.P. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int. J. Psychophysiol. 2006, 59, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Winneke, A.H.; Godde, B.; Reuter, E.-M.; Vieluf, S.; Voelcker-Rehage, C. The association between physical activity and attentional control in younger and older middle-aged adults: An ERP study. GeroPsych J. Gerontopsychol. Geriatr. Psychiatry 2012, 25, 207–221. [Google Scholar] [CrossRef]
- McDowell, K.; Kerick, S.; Santa Maria, D.; Hatfield, B. Aging, physical activity, and cognitive processing: An examination of P300. Neurobiol. Aging 2003, 24, 597–606. [Google Scholar] [CrossRef]
- Hatta, A.; Nishihira, Y.; Kim, S.R.; Kaneda, T.; Kida, T.; Kamijo, K.; Sasahara, M.; Haga, S. Effects of habitual moderate exercise on response processing and cognitive processing in older adults. Jpn. J. Physiol. 2005, 55, 29–36. [Google Scholar] [CrossRef]
- Hillman, C.H.; Belopolsky, A.V.; Snook, E.M.; Kramer, A.F.; McAuley, E. Physical activity and executive control: Implications for increased cognitive health during older adulthood. Res. Q. Exerc. Sport 2004, 75, 176–185. [Google Scholar] [CrossRef]
- Di Russo, F.; Taddei, F.; Apnile, T.; Spinelli, D. Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neurosci. Lett. 2006, 408, 113–118. [Google Scholar] [CrossRef]
- Scisco, J.L.; Leynes, P.A.; Kang, J. Cardiovascular fitness and executive control during task-switching: An ERP study. Int. J. Psychophysiol. 2008, 69, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Holtrop, J.L.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, D.J.; Krafft, C.E.; Schwarz, N.F.; Chi, L.; Rodrigue, A.L.; Pierce, J.E.; Allison, J.D.; Yanasak, N.E.; Liu, T.; Davis, C.L. An 8--month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology 2014, 51, 728–733. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Vivar, C.; Kramer, A.F.; van Praag, H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 2013, 17, 525–544. [Google Scholar] [CrossRef] [Green Version]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.-A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Krafft, C.E.; Schaeffer, D.J.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Pierce, J.E.; Rodrigue, A.L.; Allison, J.D.; Yanasak, N.E.; Liu, T. Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Dev. Neurosci. 2014, 36, 1–9. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010, 50, 1702–1710. [Google Scholar] [CrossRef]
- Chueh, T.-Y.; Huang, C.-J.; Hsieh, S.-S.; Chen, K.-F.; Chang, Y.-K.; Hung, T.-M. Sports training enhances visuo-spatial cognition regardless of open-closed typology. PeerJ 2017, 5, e3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Swimmers (n = 11) | Karateka (n = 11) | Irregular Exercisers (n = 11) |
---|---|---|---|
Age (yrs) | 19.64 ± 1.43 | 19.45 ± 1.04 | 20.09 ± 1.30 |
Education (yrs) | 13.55 ± 1.21 | 13.45 ± 0.93 | 13.91 ± 1.22 |
Height | 1.78 ± 0.05 | 1.75 ± 0.07 | 1.73 ± 0.04 |
Weight | 74.90 ± 6.64 | 73.02 ± 7.37 | 74.36 ± 4.50 |
BMI (kg/m2) | 23.74 ± 1.45 | 23.69 ± 1.12 | 24.87 ± 1.55 |
Sport experience | |||
Training (years) | 5.44 ± 1.63 | 6.74 ± 0.85 | 0.50 ± 0.25 * |
Number of sessions (week) | 3.18 ± 1.07 | 3.45 ± 1.29 | 0.00 ± 0.00 * |
Time (min) | 90.00 ± 23.23 | 73.63 ± 20.62 | 0.00 ± 0.00 * |
Physical activity (IPAQ) | |||
Vigorous (MET) | 500.91 ± 111.00 | 429.27 ± 127.30 | 38.18± 75.74 * |
Moderate (MET) | 786.64 ± 190.85 | 852.36 ± 132.49 | 219.18 ± 105.94 * |
light (MET) | 917.91 ± 140.96 | 866.55 ± 270.47 | 199.00 ± 79.42 * |
Total MET-min/week | 2,205.45 ± 213.21 | 2,148.18 ± 248.47 | 456.36 ± 294.02 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, M.; A. Ahmed, M.; Hasan, A.; Kojima, H.; R. Abdelhakem, A. Sport Experience and Physical Activity: Event-Related Brain Potential and Task Performance Indices of Attention in Young Adults. J. Funct. Morphol. Kinesiol. 2019, 4, 33. https://doi.org/10.3390/jfmk4020033
Aly M, A. Ahmed M, Hasan A, Kojima H, R. Abdelhakem A. Sport Experience and Physical Activity: Event-Related Brain Potential and Task Performance Indices of Attention in Young Adults. Journal of Functional Morphology and Kinesiology. 2019; 4(2):33. https://doi.org/10.3390/jfmk4020033
Chicago/Turabian StyleAly, Mohamed, Mohamed A. Ahmed, Asmaa Hasan, Haruyuki Kojima, and Abdelhakem R. Abdelhakem. 2019. "Sport Experience and Physical Activity: Event-Related Brain Potential and Task Performance Indices of Attention in Young Adults" Journal of Functional Morphology and Kinesiology 4, no. 2: 33. https://doi.org/10.3390/jfmk4020033
APA StyleAly, M., A. Ahmed, M., Hasan, A., Kojima, H., & R. Abdelhakem, A. (2019). Sport Experience and Physical Activity: Event-Related Brain Potential and Task Performance Indices of Attention in Young Adults. Journal of Functional Morphology and Kinesiology, 4(2), 33. https://doi.org/10.3390/jfmk4020033