A Comparison between Male and Female Athletes in Relative Strength and Power Performances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Methodologies
2.3. Strength and Power Testing
2.4. Ultrasonography Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bishop, P.; Cureton, K.; Collins, M. Sex difference in muscular strength in equally-trained men and women. Ergonomics 1987, 30, 675–687. [Google Scholar] [CrossRef]
- Miyashita, M.; Kanehisa, H. Dynamic peak torque related to age, sex, and performance. Res. Q. 1979, 50, 249–255. [Google Scholar] [CrossRef]
- Garhammer, J. A comparison of maximal power outputs between elite male and female weightlifters in competition. J. Appl. Biomech. 1991, 7, 3–11. [Google Scholar] [CrossRef]
- Harbili, E. A gender-based kinematic and kinetic analysis of the snatch lift in elite weightlifters in 69-kg category. J. Sports Sci. Med. 2012, 11, 162–169. [Google Scholar]
- Kanehisa, H.; Ikegawa, S.; Fukunaga, T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.E.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Hancock, K.; Rollison, L.; Ball, T.E.; Bowen, J.C. Contributions of strength and body composition to the gender difference in anaerobic power. J. Sports Med. Phys. Fit. 2001, 41, 33–38. [Google Scholar]
- Merrigan, J.J.; White, J.B.; Hu, Y.E.; Stone, J.D.; Oliver, J.M.; Jones, M.T. Differences in elbow extensor muscle characteristics between resistance-trained men and women. Eur. J. Appl. Physiol. 2018, 118, 2359–2366. [Google Scholar] [CrossRef]
- Schantz, P.; Randall-Fox, E.; Hutchinson, W.; Tyden, W.; Astrand, P.O. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol. Scand. 1983, 117, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, J.L.; Salm, P.C. Gender differences in anaerobic power tests. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 133–138. [Google Scholar] [CrossRef]
- McMahon, J.J.; Rej, S.J.E.; Comfort, P. Sex differences in countermovement jump phase characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Nindl, B.C.; Mahar, M.T.; Harman, E.A.; Patton, J.F. Lower and upper body anaerobic performance in male and female adolescent athletes. Med. Sci. Sports Exerc. 1995, 27, 235–241. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Bouchard, C.L. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol. 1989, 257, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Jaworowski, Å.; Porter, M.M.; Holmbäck, A.M.; Downham, D.; Lexell, J. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: Relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol. Scand. 2002, 176, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gomez, J.; Rodriguez, G.V.; Ara, I.; Olmedillas, H.; Chavarren, J.; González-Henriquez, J.J.; Dorado, C.; Calbet, J.A. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008, 102, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Rovai, C.; Malagoli Lanzoni, I.; Di Michele, R. Relationships between muscle architecture, deadlift performance, and maximal isometric force produced at the Midthigh and Midshin Pull in resistance-trained individuals. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Sharp, N.C. Understanding muscle architectural adaptation: Macro-and micro-level research. Cells Tissues Organs 2005, 181, 1–10. [Google Scholar] [CrossRef]
- Coratella, G.; Longo, S.; Borrelli, M.; Doria, C.; Cè, E.; Esposito, F. Vastus intermedius muscle architecture predicts the late phase of the knee extension rate of force development in recreationally resistance-trained men. J. Sci. Med. Sport 2020, 23, 1100–1104. [Google Scholar] [CrossRef]
- Coratella, G.; Longo, S.; Rampichini, S.; Limonta, E.; Shokohyar, S.; Valentina Bisconti, A.; Cè, E.; Esposito, F. Quadriceps and gastrocnemii anatomical cross-sectional area and vastus lateralis fascicle length predict peak-power and time-to-peak-power. Res. Q. Exerc. Sport 2020, 91, 158–165. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Giorgi, A. Effect of testosterone administration and weight training on muscle architecture. Med. Sci. Sports Exerc. 2001, 33, 1688–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Changes in muscle architecture and performance during a competitive season in female softball players. J. Strength Cond. Res. 2012, 26, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.Á. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sports Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef]
- Bartolomei, S.; Sadres, E.; Church, D.D.; Arroyo, E.; Gordon, J.A., III; Varanoske, A.N.; Wang, R.; Beyer, K.S.; Oliveira, L.P.; Stout, J.R.; et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur. J. Appl. Physiol. 2017, 117, 1287–1298. [Google Scholar] [CrossRef]
- Bartolomei, S.; Nigro, F.; Ruggeri, S.; Lanzoni, I.M.; Ciacci, S.; Merni, F.; Sadres, E.; Hoffman, J.R.; Semprini, G. Comparison between bench press throw and ballistic push-up tests to assess upper-body power in trained individuals. J. Strength Cond. Res. 2018, 32, 1503–1510. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Schena, F. Correlation between quadriceps and hamstring inter-limb strength asymmetry with change of direction and sprint in U21 elite soccer-players. Hum. Mov. Sci. 2018, 59, 81–87. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Zmijewski, P.; Krzysztofik, M.; Filip, A.; Del Coso, J.; Tufano, J.J. The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 2020, 72, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Bartolomei, S.; Nigro, F.; Malagoli Lanzoni, I.; Masina, F.; Di Michele, R.; Hoffman, J.R. A Comparison between Total Body and Split Routine Resistance Training Programs in Trained Men. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Fujita, S.; Ogasawara, R.; Sato, Y.; Abe, T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: A pilot study. Clin. Physiol. Funct. Imaging 2010, 30, 338–343. [Google Scholar] [CrossRef]
- O’Sullivan, C.; Meaney, J.; Boyle, G.; Gormley, J.; Stokes, M. The validity of rehabilitative ultrasound imaging for measurement of trapezius muscle thickness. Man. Ther. 2009, 14, 572–578. [Google Scholar] [CrossRef]
- Bazyler, C.D.; Mizuguchi, S.; Harrison, A.P.; Sato, K.; Kavanaugh, A.A.; DeWeese, B.H.; Stone, M.H. Changes in muscle architecture, explosive ability, and track and field throwing performance throughout a competitive season and after a taper. J. Strength Cond. Res. 2017, 31, 2785–2793. [Google Scholar] [CrossRef]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Routledge: New York, NY, USA, 2012; Chapter 4; p. 169. [Google Scholar]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Bezerra, E.S.; Simão, R.; Fleck, S.J.; Paz, G.; Maia, M.; Costa, P.B.; Amadio, A.C.; Miranda, H.; Serrão, J.C. Electromyographic activity of lower body muscles during the deadlift and still-legged deadlift. J. Exerc. Physiol. Online 2013, 16, 30–39. [Google Scholar]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef]
- Katch, V.L.; Katch, F.I.; Moffatt, R.; Gittleson, M. Muscular development and lean body weight in body builders and weightlifters. Med. Sci. Sports Exerc. 1980, 12, 340–344. [Google Scholar] [CrossRef]
- Palma-Lafourcade, P.; Cisterna, D.; Hernandez, J.; Ramirez-Campillo, R.; Alvarez, C.; Keogh, J.W. Body composition of male and female Chilean powerlifters of varying body mass. Mot. Rev. Educ. Física 2019, 25, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Graci, V.; Van Dillen, L.R.; Salsich, G.B. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture 2012, 36, 461–466. [Google Scholar] [CrossRef]
- Serresse, O.; Ama, P.F.; Simoneau, J.A.; Lortie, G.; Bouchard, C.; Boulay, M.R. Anaerobic performances of sedentary and trained subjects. Can. J. Sport Sci. 1989, 14, 46–52. [Google Scholar]
- Kumagai, K.; Abe, T.; Brechue, W.F.; Ryushi, T.; Takano, S.; Mizuno, M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J. Appl. Physiol. 2000, 88, 811–816. [Google Scholar] [CrossRef]
- Arampatzis, A.; Karamanidis, K.; Stafilidis, S.; Morey-Klapsing, G.; DeMonte, G.; Brüggemann, G.P. Effect of different ankle-and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. J. Biomech. 2006, 39, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Kearns, C.F.; Abe, T.; Brechue, W.F. Muscle enlargement in sumo wrestlers includes increased muscle fascicle length. Eur. J. Appl. Physiol. 2000, 83, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Utkan, A.; Khalafi, A.; Green, S.; Caiozzo, V.J. Sarcomere remodeling following muscle lengthening: Architectural analysis. Med. Sci. Sports Exerc. 2000, 32, S211. [Google Scholar]
- Hales, M.E.; Johnson, B.F.; Johnson, J.T. Kinematic analysis of the powerlifting style squat and the conventional deadlift during competition: Is there a cross-over effect between lifts? J. Strength Cond. Res. 2009, 23, 2574–2580. [Google Scholar] [CrossRef] [Green Version]
Men | Women | |
---|---|---|
FM (kg) | 13.1 ± 3.6 | 11.3 ± 2.0 |
LBM (kg) | 75.8 ± 12.6 | 44.5 ± 4.3 * |
TRAPMT (mm) | 13.9 ± 2.7 | 8.8 ± 1.9 * |
PECMT (mm) | 22.9 ± 3.2 | 12.5 ± 3.3 * |
VLMT (mm) | 20.5 ± 3.6 | 14.9 ± 3.2 * |
VLPA (°) | 8.5 ± 1.2 | 7.8 ± 1.2 |
VLFL (mm) | 14.5 ± 2.7 | 10.7 ± 2.3 * |
Men | Women | ANCOVA Statistics (Difference Adjusted for BM) | ANCOVA Statistics (Difference Adjusted for LBM) | |
---|---|---|---|---|
1RMSQ (kg) | 178.5 ± 50.3 | 76.4 ± 31.3 | F = 29.731 | F = 0.005 |
p < 0.001 | p = 0.945 | |||
η2 = 0.219 | η2 = 0.001 | |||
1RMDE (kg) | 203.4 ± 49.5 | 88.7 ± 32.4 | F = 12.339 | F = 0.531 |
p = 0.002 | p = 0.472 | |||
η2 = 0.314 | η2 = 0.019 | |||
1RMBP (kg) | 121.1 ± 23.4 | 49.3 ± 16.6 | F = 29.731 | F = 6.224 |
p < 0.001 | p = 0.019 | |||
η2 = 0.524 | η2 = 0.187 | |||
MSP (N) | 2030.5 ± 545.1 | 943.2 ± 210.8 | F = 9.613 | F = 0.462 |
p = 0.004 | p = 0.502 | |||
η2 = 0.263 | η2 = 0.017 | |||
BPT (W) | 477.7 ± 115.2 | 185.4 ± 55.7 | F = 23.643 | F = 6.706 |
p < 0.001 | p = 0.015 | |||
η2 = 0.467 | η2 = 0.199 | |||
CMJP (w) | 4613.9 ± 925.6 | 2577.6 ± 547.0 | F = 10.856 | F = 0.202 |
p = 0.003 | p = 0.556 | |||
η2 = 0.287 | η2 = 0.007 |
1RMSQ | 1RMDL | 1RMBP | MSP | POW50 | CMJP | TRAPMT | PECMT | VLMT | |
---|---|---|---|---|---|---|---|---|---|
1RMSQ | 0.95; p < 0.001 | 0.80; p < 0.001 | 0.90; p < 0.001 | 0.38; p = 0.144 | 0.75; p < 0.001 | 0.66; p = 0.005 | 0.44; p < 0.085 | 0.65; p = 0.006 | |
1RMDL | 0.85; p < 0.001 | 0.86; p < 0.001 | 0.43; p = 0.09 | 0.78; p < 0.001 | 0.61; p = 0.013 | 0.55; p = 0.027 | 0.55; p = 0.028 | ||
1RMBP | 0.66; p = 0.006 | 0.54; p = 0.032 | 0.76; p < 0.001 | 0.71; p = 0.002 | 0.83; p < 0.001 | 0.41; p = 0.112 | |||
MSP | 0.55; p < 0.027 | 0.85; p < 0.001 | 0.48; p < 0.056 | 0.49; p < 0.097 | 0.55; p = 0.029 | ||||
BPT | 0.67; p = 0.004 | 0.46; p < 0.070 | 0.57; p < 0.022 | 0.03; p = 0.917 | |||||
CMJP | 0.37; p = 0.156 | 0.64; p = 0.008 | 0.36; p < 0.170 | ||||||
TRAPMT | 0.45; p = 0.079 | 0.07; p = 0.483 | |||||||
PECMT | 0.19; p = 0.485 |
1RMSQ | 1RMDL | 1RMBP | MSP | POW50 | CMJP | TRAPMT | PECMT | VLMT | |
---|---|---|---|---|---|---|---|---|---|
1RMSQ | 0.94; p < 0.001 | 0.93; p < 0.001 | 0.75; p = 0.02 | 0.68; p = 0.007 | 0.31; p = 0.28 | 0.52; p = 0.056 | 0.72; p = 0.004 | 0.19; p = 0.518 | |
1RMDL | 0.84; p < 0.001 | 0.69; p = 0.009 | 0.66; p = 0.010 | 0.28; p = 0.329 | 0.4; p = 0.159 | 0.61; p = 0.019 | 0.28; p = 0.335 | ||
1RMBP | 0.77; p = 0.001 | 0.66; p = 0.010 | 0.47; p < 0.088 | 0.71; p = 0.005 | 0.82; p < 0.005 | 0.26; p = 0.373 | |||
MSP | 0.66; p < 0.035 | 0.52; p = 0.050 | 0.62; p = 0.018 | 0.72; p = 0.003 | 0.19; p = 0.502 | ||||
BPT | 0.43; p = 0.122 | 0.41; p < 0.143 | 0.82; p < 0.001 | 0.25; p = 0.380 | |||||
CMJP | 0.42; p = 0.130 | 0.57; p = 0.034 | 0.06; p = 0.845 | ||||||
TRAPMT | 0.70; p = 0.006 | 0.33; p = 0.242 | |||||||
PECMT | 0.32; p = 0.257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A Comparison between Male and Female Athletes in Relative Strength and Power Performances. J. Funct. Morphol. Kinesiol. 2021, 6, 17. https://doi.org/10.3390/jfmk6010017
Bartolomei S, Grillone G, Di Michele R, Cortesi M. A Comparison between Male and Female Athletes in Relative Strength and Power Performances. Journal of Functional Morphology and Kinesiology. 2021; 6(1):17. https://doi.org/10.3390/jfmk6010017
Chicago/Turabian StyleBartolomei, Sandro, Giuseppe Grillone, Rocco Di Michele, and Matteo Cortesi. 2021. "A Comparison between Male and Female Athletes in Relative Strength and Power Performances" Journal of Functional Morphology and Kinesiology 6, no. 1: 17. https://doi.org/10.3390/jfmk6010017
APA StyleBartolomei, S., Grillone, G., Di Michele, R., & Cortesi, M. (2021). A Comparison between Male and Female Athletes in Relative Strength and Power Performances. Journal of Functional Morphology and Kinesiology, 6(1), 17. https://doi.org/10.3390/jfmk6010017