Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose?
Abstract
:1. Introduction
2. Assessment of Maximal Oxygen Uptake
3. Assessment of Specific Intermittent Endurance
4. Performance Monitoring and Assessment of the Training Effects
5. Training Prescription
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Svensson, M.; Drust, B. Testing soccer players. J. Sports Sci. 2005, 23, 601–618. [Google Scholar] [CrossRef]
- Paul, D.J.; Nassis, G.P. Physical fitness testing in youth soccer: Issues and considerations regarding reliability, validity, and sensitivity. Pediatr. Exerc. Sci. 2015, 27, 301–313. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Buchheit, M. Football-specific fitness testing: Adding value or confirming the evidence? J. Sports Sci. 2013, 31, 1503–1508. [Google Scholar] [CrossRef]
- Carling, C.; Collins, D. Comment on “Football-specific fitness testing: Adding value or confirming the evidence?”. J. Sports Sci. 2014, 32, 1206–1208. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, M. Monitoring Training and Performance in Athletes; Human Kinetics: Champaign, IL, USA, 2017; pp. 1–12. [Google Scholar]
- McGuigan, M. Principles of test selection and administration. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 249–258. [Google Scholar]
- Buchheit, M.; Laursen, P. Traditional methods of HIIT programming. In Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle; Laursen, P., Buchheit, M., Eds.; Human Kinetics: Champaign, IL, USA, 2019; pp. 17–31. [Google Scholar]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Bentely, D.J.; Newell, J.; Bishop, D. Incremental exercise test design and analysis: Implications for performance diagnostics in endurance athletes. Sports Med. 2007, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Boucher, R. An indirect continuous running multistage field test: The Université de Montréal track test. Can. J. Appl. Sport Sci. 1980, 5, 77–84. [Google Scholar]
- Mendez-Villanueva, A.; Buchheit, M.; Kuitunen, S.; Poon, T.K.; Simpson, B.; Peltola, E. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Ped. Exerc. Sci. 2010, 22, 497–510. [Google Scholar] [CrossRef]
- Léger, L.A.; Lambert, J. A maximal multistage 20 m shuttle run test to predict VO2max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Buchheit, M. The 30-15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. J. Strength Cond. Res. 2008, 22, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Haydar, B.; Hader, K.; Ufland, P.; Ahmaidi, S. Assessing running economy during field running with changes of direction: Application to 20 m shuttle runs. Int. J. Sports Physiol. Perform. 2011, 6, 380–395. [Google Scholar] [CrossRef]
- Bekraoui, N.; Boussaidi, L.; Cazorla, G.; Léger, L. Oxygen uptake, heart rate, and lactate responses for continuous forward running and stop-and-go running with and without directional changes. J. Strength Cond. Res. 2020, 34, 699–703. [Google Scholar] [CrossRef]
- Ahmaidi, S.; Collomp, K.; Préfaut, C. The effect of shuttle test protocol and the resulting lactacidaemia on maximal velocity and maximal oxygen uptake during the shuttle exercise test. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 475–479. [Google Scholar] [CrossRef]
- Haydar, B.; Al Haddad, H.; Ahmaidi, S.; Buchheit, M. Assessing inter-effort recovery and change of direction ability with the 30-15 intermittent fitness test. J. Sports Sci. Med. 2011, 10, 346–354. [Google Scholar]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part 1: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players: Physiological considerations. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Match running performance and fitness in youth soccer. Int. J. Sports Med. 2010, 31, 818–825. [Google Scholar] [CrossRef]
- Mendez-Villanueva, A.; Buchheit, M.; Simpson, B.; Bourdon, P.C. Match play intensity distribution in youth soccer. Int. J. Sports Med. 2013, 34, 101–110. [Google Scholar] [CrossRef]
- Rebelo, A.; Brito, J.; Seabra, A.; Oliveira, J.; Krustrup, P. Physical match performance of youth football players in relation to physical capacity. Eur. J. Sport Sci. 2014, 14, S148–S156. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Castagna, C.; Reilly, T.; Sassi, A.; Iaia, F.M.; Rampinini, E. Physiological and performance effects of generic versus specific aerobic training in soccer players. Int. J. Sports Med. 2006, 27, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Simpson, B.M.; Mendez-Villanueva, A. Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. Int. J. Sports Med. 2013, 34, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carling, C.; Gall, F.L.; Reilly, T.P. Effects of physical efforts on injury in elite soccer. Int. J. Sports Med. 2010, 31, 180–185. [Google Scholar] [CrossRef]
- Rampinini, E.; Impellizzeri, F.M.; Castagna, C.; Azzalin, A.; Ferrari Bravo, D.; Wisløff, U. Effect of match-related fatigue on short-passing ability in young soccer players. Med. Sci. Sports Exerc. 2008, 40, 934–942. [Google Scholar] [CrossRef]
- Taylor, J.B.; Wright, A.A.; Dischiavi, S.L.; Townsend, M.A.; Marmon, A.R. Activity demands during multi-directional team sports: A systematic review. Sports Med. 2017, 7, 2533–2551. [Google Scholar] [CrossRef]
- Ufland, P.; Ahmaidi, S.; Buchheit, M. Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: Effect of training background. Int. J. Sports Med. 2013, 34, 924–930. [Google Scholar] [CrossRef]
- Spencer, M.; Bishop, D.; Dawson, B.; Goodman, C. Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med. 2005, 35, 1025–1044. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability. Part 1: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Buchheit, M. Repeated-sprint performance in team sport players: Associations with measures of aerobic fitness, metabolic control and locomotor function. Int. J. Sports Med. 2012, 33, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Al Haddad, H.; Millet, G.P.; Lepretre, P.M.; Newton, M.; Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players. J. Strength Cond. Res. 2009, 23, 93–100. [Google Scholar] [CrossRef]
- Schmitz, B.; Pfeifer, C.; Thorwesten, L.; Krüger, M.; Klose, A.; Brand, S.M. Yo-Yo intermittent recovery level 1 test for estimation of peak oxygen uptake: Use without restriction? Res. Q. Exerc. Sport. 2020, 91, 478–487. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Mayorga-Vega, D.; Aguilar-Soto, P.; Viciana, J. Criterion-related validity of the 20 m shuttle run test for estimating cardiorespiratory fitness: A meta-analysis. J. Sports Sci. Med. 2015, 14, 536–547. [Google Scholar]
- Martínez-Lagunas, V.; Hartmann, U. Validity of the Yo-Yo intermittent recovery test level 1 for direct measurement or indirect estimation of maximal oxygen uptake in female soccer players. Int. J. Sports Physiol. Perform. 2014, 9, 825–831. [Google Scholar] [CrossRef]
- Buchheit, M. The 30-15 intermittent fitness test: 10 year review. Myorobie J. 2010, 1, 278. [Google Scholar]
- Thomas, A.; Dawson, B.; Goodman, C. The Yo-Yo test: Reliability and association with a 20 m shuttle run and VO2max. Int. J. Sports Physiol. Perform. 2006, 1, 137–149. [Google Scholar] [CrossRef]
- Castagna, C.; Krustrup, P.; Póvoas, S. Yo-Yo intermittent tests are a valid tool for aerobic fitness assessment in recreational football. Eur. J. Appl. Physiol. 2019, 120, 137–147. [Google Scholar] [CrossRef]
- Glaister, M. Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005, 35, 757–777. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Repeated-sprint sequences during youth soccer matches. Int. J. Sports Med. 2010, 31, 709–716. [Google Scholar] [CrossRef]
- Rampinini, E.; Impellizzeri, F.M.; Castagna, C.; Coutts, A.J.; Wisløff, U. Technical performance during soccer matches of the Italian serie A league: Effect of fatigue and competitive level. J. Sci. Med. Sport 2009, 12, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Impellizzeri, F.; Cecchini, E.; Rampinini, E.; Alvarez, J.C.B. Effects of intermittent-endurance fitness on match performance in young male soccer players. J. Strength Cond. Res. 2009, 23, 1954–1959. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; Manzi, V.; Impellizzeri, F.; Weston, M.; Alvarez, J.C.B. Relationship between endurance field tests and match performance in young soccer players. J. Strength Cond. Res. 2010, 24, 3227–3233. [Google Scholar] [CrossRef] [Green Version]
- Doncaster, G.; Marwood, S.; Iga, J.; Unnithan, V. Influence of oxygen uptake kinetics on physical performance in youth soccer. Eur. J. Appl. Physiol. 2016, 116, 1781–1794. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, B.; Pfeifer, C.; Kreitz, K.; Borowski, M.; Faldum, A.; Brand, S.M. The Yo-Yo intermittent tests: A systematic review and structured compendium of test results. Front. Physiol. 2018, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Villanueva, A.; Buchheit, M. Physical capacity-match physical performance relationships in soccer: Simply, more complex. Eur. J. Appl. Physiol. 2011, 111, 2387–2389. [Google Scholar] [CrossRef]
- Carling, C. Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach? Sports Med. 2013, 43, 655–663. [Google Scholar] [CrossRef]
- Buchheit, M.; Simpson, B.M. Player-tracking technology: Half-full or half-empty glass? Int. J. Sports Physiol. Perform. 2017, 12, S2–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sports Med. Phys. Fit. 2019, 59, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. 30-15 intermittent fitness test and repeated sprint ability. Sci. Sports 2008, 23, 26–28. [Google Scholar] [CrossRef]
- Buchheit, M.; Rabbani, A. The 30-15 intermittent fitness test versus the Yo-Yo intermittent recovery test level 1: And sensitivity to training. Int. J. Sports Physiol. Perform. 2014, 9, 522–524. [Google Scholar] [CrossRef]
- Buchheit, M. The numbers will love you back in return—I promise. Int. J. Sports Physiol. Perform. 2016, 11, 551–554. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Lacome, M.; Simpson, B.M.; Buchheit, M. Monitoring training status with player-tracking technology: Still on the road to Rome. Part 1: Traditional practices and new concepts. Aspetar Sports Med. J. 2018, 7, 54–63. [Google Scholar]
- Buchheit, M.; Laursen, P.; Stanley, J.; Plews, D.; Al Haddad, H.; Lacome, M.; Simpson, B.; Saw, A. Response to load. In Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle; Laursen, P., Buchheit, M., Eds.; Human Kinetics: Champaign, IL, USA, 2019; pp. 179–212. [Google Scholar]
- Čović, N.; Jelešković, E.; Alić, H.; Rađo, I.; Kafedžić, E.; Sporiš, G.; McMaster, D.T.; Milanović, Z. Reliability, validity and usefulness of 30-15 intermittent fitness test in female soccer players. Front. Physiol. 2016, 7, 510. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Dos’Santos, T.; Jones, P.A.; Comfort, P. Reliability of the 30–15 intermittent fitness test in semiprofessional soccer players. Int. J. Sports. Physiol. Perform. 2016, 11, 172–175. [Google Scholar] [CrossRef]
- Valladares-Rodríguez, S.; Rey, E.; Mecías-Calvo, M.; Barcala-Furelos, R.; Bores-Cerezal, A.J. Reliability and usefulness of the 30-15 intermittent fitness test in male and female professional futsal players. J. Hum. Kinet. 2017, 60, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Mendez-Villanueva, A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: Effect of age and maturation. J. Sports Sci. 2013, 31, 1332–1343. [Google Scholar] [CrossRef]
- Aziz, A.R.; Tan, H.Y.F.; Chuan, T.K. The 20 m multistage shuttle run test: Reliability, sensitivity and its performance correlates in trained soccer players. Asian J. Exerc. Sports Sci. 2005, 2, 1–7. [Google Scholar]
- Hill-Haas, S.V.; Coutts, A.J.; Rowsell, G.J.; Dawson, B.T. Generic versus small-sided game training in soccer. Int. J. Sports Med. 2009, 30, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Deprez, D.; Coutts, A.J.; Lenoir, M.; Fransen, J.; Pion, J.; Philippaerts, R.; Vaeyens, R. Reliability and validity of the Yo-Yo intermittent recovery test level 1 in young soccer players. J. Sports Sci. 2014, 32, 903–910. [Google Scholar] [CrossRef]
- Deprez, D.; Fransen, J.; Lenoir, M.; Philippaerts, R.M.; Vaeyens, R. The Yo-Yo intermittent recovery test level 1 is reliable in young high-level soccer players. Biol. Sport 2015, 32, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Castagna, C.; Krustrup, P.; D’Ottavio, S.; Pollastro, C.; Bernardini, A.; Araújo Póvoas, S.C. Ecological validity and reliability of an age-adapted endurance field test in young male soccer players. J. Strength Cond. Res. 2019, 33, 3400–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Póvoas, S.C.A.; Castagna, C.; Soares, J.M.C.; Silva, P.; Coelho-e-Silva, M.; Matos, F.; Krustrup, P. Reliability and construct validity of Yo-Yo tests in untrained and soccer-trained schoolgirls aged 9–16. Pediatr. Exerc. Sci. 2016, 28, 321–330. [Google Scholar] [CrossRef]
- Póvoas, S.C.A.; Castagna, C.; Soares, J.M.C.; Silva, P.M.R.; Lopes, M.V.M.F.; Krustrup, P. Reliability and validity of Yo-Yo tests in 9 to 16 year-old football players and matched non-sports active schoolboys. Eur. J. Sports Sci. 2016, 16, 755–763. [Google Scholar] [CrossRef]
- Fanchini, M.; Castagna, C.; Coutts, A.J.; Schena, F.; McCall, A.; Impellizzeri, F.M. Are Yo-Yo intermittent recovery test level 1 and 2 both useful? Reliability, responsiveness and interchangeability in young soccer players. J. Sports Sci. 2014, 32, 1950–1957. [Google Scholar] [CrossRef]
- Enright, K.; Morton, J.; Iga, J.; Lothian, D.; Roberts, S.; Drust, B. Reliability of “in-season” fitness assessments in youth elite soccer players: A working model for practitioners and coaches. Sci. Med. Footb. 2018, 2, 177–183. [Google Scholar] [CrossRef]
- Da Silva, C.D.; Natali, A.J.; de Lima, J.R.P.; Filho, M.G.B.; Garcia, E.S.; Bouzas Marins, J.C. Yo-Yo IR2 test and Margaria test: Validity, reliability and maximum heart rate in young soccer players. Rev. Bras. Med. Esporte 2011, 17, 344–349. [Google Scholar]
- Krustrup, P.; Mohr, M.; Nybo, L.; Jensen, J.M.; Nielsen, J.J.; Bangsbo, J. The Yo-Yo IR2 test: Physiological response, reliability, and application to elite soccer. Med. Sci. Sports Exerc. 2006, 38, 1666–1673. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010, 108, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Los Arcos, A.; Vázquez, J.S.; Martín, J.; Lerga, J.; Sánchez, F.; Villagra, F.; Zuluta, J.J. Effects of small-sided games vs interval training in aerobic fitness and physical enjoyment in young elite soccer players. PLoS ONE 2015, 10, e0137224. [Google Scholar]
- Dupont, G.; Akakpo, K.; Berthoin, S. The effect of in-season, high-intensity interval training in soccer players. J. Strength Cond. Res. 2004, 18, 584–589. [Google Scholar] [PubMed]
- Faude, O.; Steffen, A.; Kellmann, M.; Meyer, T. The effect of short-term interval training during the competitive season on physical fitness and signs of fatigue: A crossover trial in high-level youth football players. Int. J. Sports Physiol. Perform. 2014, 9, 936–944. [Google Scholar] [CrossRef]
- Faude, O.; Schnittker, R.; Schulte-Zurhausen, R.; Müller, F.; Meyer, T. High-intensity interval training vs. high-volume running training during pre-season conditioning in high-level youth football: A cross-over trial. J. Sports Sci. 2013, 31, 1441–1450. [Google Scholar] [CrossRef]
- Dellal, A.; Varliette, C.; Owen, A.; Chirico, E.N.; Pialoux, V. Small-sided games versus interval training in amateur soccer players: Effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J. Strength Cond. Res. 2012, 26, 2712–2720. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.L.; Chaouachi, A.; Chamari, K.; Dellal, A.; Wisloff, U. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. J. Strength Cond. Res. 2010, 24, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Slettaløkken, G.; Rønnestad, B.R. High-intensity interval training every second week maintains VO2max in soccer players during off-season. J. Strength Cond. Res. 2014, 28, 1946–1951. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Sanchez, J.; Gonzalo-Skok, O.; Carretero, M.; Pineda, A.; Ramirez-Campillo, R.; Nakamura, F.Y. Effects of concurrent eccentric overload and high-intensity interval training on team sports players’ performance. Kinesiology 2019, 51, 119–126. [Google Scholar] [CrossRef]
- Tønnessen, E.; Shalfawi, S.A.I.; Haugen, T.; Enoksen, E. The effect of 40 m repeated sprint training on maximum sprinting speed, repeated sprint speed endurance, vertical jump, and aerobic capacity in young elite male soccer players. J. Strength Cond. Res. 2011, 25, 2364–2370. [Google Scholar] [CrossRef]
- Shalfawi, S.A.I.; Haugen, T.; Jakobsen, T.A.; Enoksen, E.; Tønnessen, E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J. Strength Cond. Res. 2013, 27, 2966–2972. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.A.; Castagna, C.; Bizzini, M.; Wisløff, U. Effects of aerobic training on the exercise-induced decline in short-passing ability in junior soccer players. Appl. Physiol. Nutr. Metab. 2008, 33, 1192–1198. [Google Scholar] [CrossRef]
- Özcan, İ.; Eniseler, N.; Şahan, C. Effects of small-sided games and conventional aerobic interval training on various physiological characteristics and defensive and offensive skills used in soccer. Kinesiology 2018, 50, 104–111. [Google Scholar] [CrossRef]
- Ferrari Bravo, D.; Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Wisloff, U. Sprint vs. interval training in football. Int. J. Sports Med. 2008, 29, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Arslan, E.; Orer, G.E.; Clemente, F.M. Running-based high-intensity interval training vs. small-sided game training programs: Effects on the physical performance, psychophysiological responses and technical skills in young soccer players. Biol. Sport. 2020, 37, 165–173. [Google Scholar] [CrossRef]
- Ouerghi, N.; Khammassi, M.; Boukorraa, S.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects. J. Sports Med. 2014, 5, 23–248. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.M.; MacPherson, T.W.; McLaren, S.J.; Spears, I.; Weston, M. Two-weeks of repeated-sprint training in soccer: To turn or not to turn? Int. J. Sports Physiol. Perform. 2016, 11, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beato, M.; Coratella, G.; Bianchi, M.; Costa, E.; Merlini, M. Short-term repeated-sprint training (straight sprint vs. changes of direction) in soccer players. J. Hum. Kinet. 2019, 70, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares-Caldeira, L.F.; de Souza, E.A.; de Freitas, V.H.; de Moraes, S.M.F.; Leicht, A.S.; Nakamura, F.Y. Effects of additional repeated sprint training during preseason on performance, heart rate variability, and stress symptoms in futsal players: A randomized controlled trial. J. Strength Cond. Res. 2014, 28, 2815–2826. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, M.; Kilvington, R.; Babraj, J. Effect of in-season uphill sprinting on physical characteristics in semi-professional soccer players. J. Sports Med. Phys. Fit. 2017, 57, 165–170. [Google Scholar]
- Eniseler, N.; Şahan, C.; Özcan, I.; Dinler, K. High-intensity small-sided games versus repeated sprint training in junior soccer players. J. Hum. Kinet. 2017, 60, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Nedrehagen, E.S.; Saeterbakken, A.H. The effects of in-season repeated sprint training compared to regular soccer training. J. Hum. Kinet. 2015, 49, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Shalfawi, S.A.I.; Young, M.; Tønnesen, E.; Haugen, T.A.; Enoksen, E. The effect of repeated agility training vs. repeated sprint training on elite female soccer players’ physical performance. Kin. Sloven. 2013, 19, 29–42. [Google Scholar]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. A single session of straight line and change-of-direction sprinting per week does not lead to different fitness improvements in elite young soccer players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, J.; Ramirez-Campillo, R.; Petisco, C.; Gonzalo Skok, O.; Rodriguez-Fernandez, A.; Miñano, J.; Nakamura, F.Y. Effects of repeated sprints with changes of direction on youth soccer player’s performance: Impact of initial fitness level. J. Strength Cond. Res. 2019, 33, 2753–2759. [Google Scholar] [CrossRef]
- Campos-Vazquez, M.A.; Romero-Boza, S.; Toscano-Bendala, F.J.; Leon-Prados, J.A.; Suarez-Arrones, L.J.; Gonzalez-Jurado, J.A. Comparison of the effect of repeated-sprint training combined with two different methods of strength training on young soccer players. J. Strength Cond. Res. 2015, 29, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Haugen, T.; Tonnessen, E.; Leirstein, S.; Hem, E.; Seiler, S. Not quite so fast: Effect of training at 90% sprint speed on maximal and repeated sprint ability in soccer players. J. Sports Sci. 2014, 32, 1979–1986. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, M.; Fiorenza, M.; Lund, A.; Christensen, M.; Rømer, T.; Piil, P.; Hostrup, M.; Christensen, P.M.; Holbek, S.; Ravnholt, T.; et al. Adaptations to speed endurance training in highly trained soccer players. Med. Sci. Sports Exerc. 2016, 48, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Hostrup, M.; Gunnarsson, T.P.; Fiorenza, M.; Mørch, K.; Onslev, J.; Pedersen, K.M.; Bangsbo, J. In-season adaptations to intense intermittent training and sprint interval training in sub-elite football players. Scand. J. Med. Sci. Sports 2019, 29, 669–677. [Google Scholar] [CrossRef]
- Macpherson, T.W.; Weston, M. The effect of low-volume sprint interval training on the development and subsequent maintenance of aerobic fitness in soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Howard, N.; Stavrianeas, S. In-season high-intensity interval training improves conditioning in high school soccer players. Int. J. Exerc. Sci. 2017, 10, 713–720. [Google Scholar]
- Dello Iacono, A.; Beato, M.; Unnithan, V. Comparative effects of game profile-based training and small-sided games on physical performance of elite young soccer players. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Iaia, M.F.; Fiorenza, M.; Larghi, L.; Alberti, G.; Millet, G.P.; Girard, O. Short or long-rest intervals during repeated-sprint training in soccer? PLoS ONE 2017, 12, e0171462. [Google Scholar] [CrossRef] [PubMed]
- Sagelv, E.H.; Selnæs, I.; Pedersen, S.; Pettersen, S.A.; Randers, M.B.; Welde, B. Effects of linear versus changes of direction repeated sprints on intermittent high intensity running performance in high-level junior football players over an entire season: A randomized trial. Sports 2019, 7, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.M.; Krustrup, P.; Gunnarsson, T.P.; Kiilerich, K.; Nybo, L.; Bangsbo, J. VO2 kinetics and performance in soccer players after intense training and inactivity. Med. Sci. Sports Exerc. 2011, 43, 1716–1724. [Google Scholar] [CrossRef]
- Thomassen, M.; Christensen, P.M.; Gunnarsson, T.P.; Nybo, L.; Bangsbo, J. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. J. Appl. Physiol. 2010, 108, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Iaia, M.F.; Fiorenza, M.; Perri, E.; Alberti, G.; Millet, G.P.; Bangsbo, J. The effect of two speed endurance training regimes on performance of soccer players. PLoS ONE 2015, 10, e0138096. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P. Comparison between two types of anaerobic speed endurance training in competitive soccer players. J. Hum. Kinet. 2016, 51, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Ingebrigtsen, J.; Shalfawi, S.A.I.; Tønnessen, E.; Krustrup, P.; Holtermann, A. Performance effects of 6 weeks of aerobic production training in junior elite soccer players. J. Strength Cond. Res. 2013, 27, 1861–1867. [Google Scholar] [CrossRef]
- Arazi, H.; Keihaniyan, A.; EatemadyBoroujeni, A.; Oftade, A.; Takhsha, S.; Asadi, A.; Ramirez-Campillo, R. Effects of heart-rate vs speed-based high intensity interval training on aerobic and anaerobic capacity of female soccer players. Sports 2017, 5, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, D.J.; Marques, J.B.; Nassis, G.P. The effect of a concentrated period of soccer specific fitness training with small-sided games on physical fitness in youth players. J. Sports Med. Phys. Fit. 2019, 59, 962–968. [Google Scholar] [CrossRef]
- Rabbani, A.; Clemente, F.M.; Kargarfard, M.; Jahangiri, S. Combined small-sided game and high-intensity interval training in soccer players: The effect of exercise order. J. Hum. Kinet. 2019, 69, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Campos-Vazquez, M.A.; Toscano-Bendala, F.J.; Mora-Ferrera, J.C.; Suarez-Arrones, L.J. Relationship between internal load indicators and changes on intermittent performance after the preseason in professional soccer players. J. Strength Cond. Res. 2017, 31, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 11, 1–22. [Google Scholar]
- Hopkins, W.G. How to interpret changes in athletic performance test. Sports Sci. 2004, 8, 1–7. [Google Scholar]
- Rampinini, E.; Sassi, A.; Azzalin, A.; Castagna, C.; Menaspà, P.; Carlomagno, D.; Impellizzeri, F.M. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur. J. Appl. Physiol. 2010, 108, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Iaia, F.M.; Rampinini, E.; Bangsbo, J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part 2: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Lamberts, R.P.; Lambert, M.I. Methods of prescribing relative exercise intensity: Physiological and practical considerations. Sports Med. 2013, 43, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Jamnick, N.A.; Pettitt, R.W.; Granata, C.; Pyne, D.P.; Bishop, D.J. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020, 50, 1729–1756. [Google Scholar] [CrossRef]
- Berthoin, S.; Gerbeaux, M.; Turpin, E.; Guerrin, F.; Lensel-Corbeil, G.; Vandendorpe, F. Comparison of two field tests to estimate maximum aerobic speed. J. Sports Sci. 1994, 12, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Dupont, G.; Defontaine, M.; Bosquet, L.; Blondel, N.; Moalla, W.; Berthoin, S. Yo-Yo intermittent recovery test versus the Université de Montréal Track Test: Relation with a high-intensity intermittent exercise. J. Sci. Med. Sport 2010, 13, 146–150. [Google Scholar] [CrossRef]
Study | Age and Gender of the Participants | Level of the Participants | Typical Error of Measurement Expressed as Coefficient of Variation | Typical Error of Measurement (Noise) | Smallest Worthwhile Change (0.2× between Subjects SD) | Usefulness of the Test | Training Type and Duration | Initial Level | Usually Observed Change (Signal) Following a Training Program | Usually Observed Change (Signal) Following a Training Program | Signal-to-Noise Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Buchheit et al. (2013) [66] b | 14.5 ± 1.5 M | Elite | 3.5% | 0.57 km/h | 0.22 km/h | Marginal | ≈16.2 km/h | ||||
Los Arcos et al. (2015) [80] a | 15.5 ± 0.6 M | National, elite | 0.18 km/h | Marginal | HIIT l (6 w) | 16.8 km/h | 1.7% | 0.3 km/h | 0.5 | ||
Dupont et al. (2004) [81] a | 20.2 ± 0.7 M | National, elite, professional | 0.16 km/h | Marginal | HIIT s + RST(10 w) | 16.1 km/h | 8.1% | 1.3 km/h | 2.3 | ||
Faude et al. (2014) [82] c | 16.5 ± 0.8 M | High-level, professional conditions | 0.2 km/h | Marginal | HIIT s (4 w) | 17.8 km/h | −2.8% | −0.5 km/h | −0.8 | ||
Faude et al. (2013) [83] c | 15.9 ± 0.8 M | High-level, professional conditions | 0.21 km/h | Marginal | HIIT s (5.5 w) | 17.1 km/h | 1.5% | 0.25 km/h | 0.4 | ||
Dellal et al. (2012) [84] b | 26.3 ± 4.7 M | Amateur | n/a | / | HIIT s (6 w) | ≈15.8 km/h | 6.6% | ≈1 km/h | 1.9 | ||
Wong et al. (2010) [85] b | 24.6 ± 1.5 M | Elite, professional | 0.04 km/h | Marginal | HIIT s (8 w) | 15.9 km/h | 3.1% | 0.5 km/h | 0.9 | ||
Faude et al. (2014) [82] c | 15.9 ± 0.8 M | High-level, professional conditions | 0.2 km/h | Marginal | SSG (4 w) | 17.5 km/h | 1.7% | 0.3 km/h | 0.5 | ||
Los Arcos et al. (2015) [80] a | 15.5 ± 0.6 M | National, elite | 0.16 km/h | Marginal | SSG (6 w) | 17.0 km/h | −0.6% | −0.1 km/h | −0.2 | ||
Dellal et al. (2012) [84] b | 26.3 ± 4.7 M | Amateur | n/a | / | SSG (6 w) | ≈16.1 km/h | 5.1% | ≈0.8 km/h | 1.5 |
Study | Age and Gender of the Participants | Level of the Participants | Typical Error of Measurement Expressed as Coefficient of Variation | Typical Error of Measurement (Noise) | Smallest Worthwhile Change (0.2× between Subjects SD) | Usefulness of the Test | Training Type and Duration | Initial Level | Usually Observed Change (Signal) Following a Training Program | Usually Observed Change (Signal) Following a Training Program | Signal-to-Noise Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Aziz et al. (2005) [67] | 27.2 ± 3.3 M | Elite, national team | 2.2% | 46 m | 36 m | Marginal | n/a (5 w) | 2.280 m | 7.9% | 180 m | 3.6 |
Castagna et al. (2010) [49] | 14.4 ± 0.1 M | Elite | 3.6% | 59.5 m | 73.4 m | Good | 1653 m | ||||
Slettaløkken and Rønnestad (2014) [86] | 18–26 M | Semi-professional | 49.6 m | HIIT l (6 w) | ≈2.433 m | −6.4% | −155 m | −2.9 [67] | |||
Hill-Hass et al. (2009) [68] | 14.6 ± 0.9 M | Elite | 4.9% | 40 m | 26.2 m | Marginal | HIIT s + RST (7 w) | 2.258 m | 3.1% | 69 m | 0.6 |
Sanchez-Sanchez et al. (2019) [87] | 22.5 ± 2.2 M | Amateur | 86.2 m | Good | HIIT s (5 w) | 1.770 m | 20.5% | 362 m | 5.7 [49] | ||
Tønnessen et al. (2011) [88] | 16.4 ± 0.9 M | Elite | 57.6 m | Ok | RST (10 w) | 2.360 m | 5.7% | 144 m | 2.6 [67] | ||
Shalfawi et al. (2013) [89] | 19.4 ± 4.4 F | Elite | 61.6 m | Ok | RST + AgT (10 w) | 1.780 m | 16.8 % | 264 m | 4.7 [49] | ||
Hill-Hass et al. (2009) [68] | 14.6 ± 0.9 M | Elite | 4.9% | 40 m | 48 m | Ok | SSG (7 w) | 2.222 m | −0.7% | −16 m | −0.1 |
Study | Age and Gender of the Participants | Level of the Participants | Typical Error of Measurement Expressed as Coefficient of Variation | Typical Error of Measurement (Noise) | Smallest Worthwhile Change (0.2× between Subjects SD) | Usefulness of the Test | Training Type and Duration | Initial Level | Usually Observed Change (Signal) Following a Training Program | Usually Observed Change (Signal) Following a Training Program | Signal-to-Noise Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Deprez et al. (2014) [69] | 12.5 ± 0.6 14.0 ± 0.5 16.2 ± 0.6 M | Sub-elite and Non-elite | U13: 17.3% U15: 16.7% U17: 7.9% | U13: 154 m U15: 171 m U17: 123 m | U13: 70.8 mU15: 88.8 mU17: 95.6 m | Marginal Marginal Marginal | U13: 890 m U15: 1.022 m U17: 1.556 m | ||||
Deprez et al. (2015) [70] | 13.9 ± 0.5 16.2 ± 0.6 18.1 ± 0.4 M | High-level | U15: 6.8% U17: 4.3% U19: 4.1% | U15: 137 m U17: 101 m U19: 107 m | U15: 94 m U17: 69.4 m U19: 67.4 m | Marginal Marginal Marginal | U15: 2.024 m U17: 2.404 m U19: 2.547 m | ||||
Castagna et al. (2019) [71] | 11.1 ± 0.9 M | 2 years’ experience | 5.1% | 51.7 m | 90.4 m | Good | 1.013 m | ||||
Krustrup et al. (2003) [26] | 28 M | Elite | 4.9% | 91.5 m | 14.4 m | Marginal | 1.867 m | ||||
Póvoas et al. (2016) [72] | 9.7 ± 0.7 F | Regional level competition | 10.1% | 71.2 m | 63.2 m | Ok | 705 m | ||||
Póvoas et al. (2016) [73] | 9.7 ± 0.7 M | Regional level competition | 11.1% | 121.9 m | 134.4 m | Ok | 1.098 m | ||||
Thomas et al. (2006) [43] | 24.4 ± 6.0 M | Recreational level | 8.7% | 107 m | 97.6 m | Ok | 1.030 m | ||||
Castagna et al. (2010) [49] | 14.4 ± 0.1 M | Elite | 3.8% | 28.9 m | 56.6 m | Good | 760 m | ||||
Castagna et al. (2009) [48] | 14.1 ± 0.2 M | Elite | 3.5% | 29.5 m | 70.4 m | Good | 842 m | ||||
Impellizzeri et al. (2008) [90] | 17.8 ± 0.6 M | High level | n/a | / | HIIT l (4 w) | ≈1.890 m | 12% | n/a | 1.6 [74] | ||
Özcan et al. (2018) [91] | 18.5 ± 1.5 M | Amateur, regional level | 71.9 m | Marginal | HIIT l (6 w) | 1.057.7 m | 89.1% | 769 m | 10.2 [43] | ||
Ferrari Bravo et al. (2008) [92] | 21.1 ± 5.1 M | Professional and amateur | 65.8 m | Marginal | HIIT l (7 w) | 1.846 m | 12.5% | 231 m | 1.7 [74] | ||
Fanchini et al. (2014) [74] | 17 ± 1 M | Professional, 4th national division | 7.3% | 140 m | 66.9 m | Marginal | HIIT l + RST + SSG(11 w) | 1.911 m | 14.5% | 277 m | 1.9 |
Buchheit and Rabbani (2014) [58] | 15.4 ± 0.5 M | National level | 51.4 m | Marginal | HIIT li + SSG (8 w) | 1.031 m | 35% | 360.9 m | 4.8 [74] | ||
Arslan et al. (2020) [93] | 14.2 ± 0.5 M | Regional level | 15 m | Marginal | HIIT s (5 w) | 1.240 m | 16.4% | 244 m | 2.2 [74] | ||
Wong et al. (2010) [85] | 24.6 ± 1.5 M | Elite, professional | 15 m | Marginal | HIIT s (8 w) | 1510 m | 19.7% | 298 m | 2.7 [74] | ||
Ouerghi et al. (2014) [94] | 22.9 ± 1.7 M | Amateur players, 3rd national division | n/a | HIIT s (12 w) | ≈1.440 m | ≈70% | 1.6 km/h≈1024 m | 8 [43] | |||
Hill-Hass et al. (2009) [68] | 14.6 ± 0.9 M | Elite | 9% | 116 m | 51.2 m | Marginal | HIIT s + RST (7 w) | 1.764 m | 21.9% | 387 m | 2.4 |
Taylor et al. (2016) [95] | 24.1 ± 4.1 M | Semi-professional | 54.8 m | Marginal | RST Sl (2 w) | 1.830 m | 24% | 439 m | 3.3 [74] | ||
Taylor et al. (2016) [95] | 24.1 ± 4.1 M | Semi-professional | 120 m | Ok | RST COD (2 w) | 1.691 m | 31% | 524 m | 4.2 [74] | ||
Beato et al. (2019) [96] | 21 ± 2.4 M | Amateur | 73 m | Marginal | RST Sl (2 w) | 1.642 m | 11% | 180 m | 1.5 [74] | ||
Beato et al. (2019) [96] | 21 ± 2.4 M | Amateur | 71.8 m | Marginal | RST COD (2 w) | 1.686 m | 7.4% | 124 m | 1 [74] | ||
Soares-Caldeira et al. (2014) [97] | 21.4 ± 5.5 M | Professional futsal, regional level | 72.6 m | Marginal | RST (4 w) | 1.280 m | 31.2% | 373 m | 4.3 [74] | ||
Kavaliauskas et al. (2017) [98] | 22 ± 8 M | Semi-professional | 81.8 m | Marginal | RST uphill 7% (6 w) | 1.468 m | 11.9% | 175 m | 1.6 [74] | ||
Eniseler et al. (2017) [99] | 16.9 ± 1.1 M | Elite, national level | 50.4 m | Marginal | RST (6 w) | 2.306.6 m | 7.5% | 173.4 m | 1 [74] | ||
Ferrari Bravo et al. (2008) [92] | 21.1 ± 5.1 M | Professional and amateur | 87.8 m | Marginal | RST (7 w) | 1.917 m | 28.1% | 538 m | 3.8 [74] | ||
Nedrehagen and Saeterbakken (2015) [100] | 19.9 ± 2.5 F 22.0 ± 2.7 M | Semi-professional female and amateur male | 37.6 m | Marginal | RST (8 w) | 1.455 m | 15.3% | 222 m | 2.1 [74] | ||
Shalfawi et al. (2013) [101] | 21.2 ± 2.6 F | Elite | 58.6 m | Marginal | RST Sl (8 w) | 920 m | 27.5% | 253 m | 3.8 [74] | ||
Shalfawi et al. (2013) [101] | 21.2 ± 2.6 F | Elite | 54.8 m | Marginal | RST COD (8 w) | 1.025 m | 9.3% | 95 m | 1.3 [74] | ||
Beato et al. (2019) [102] | 18–21 M | Elite | 44.6 m | Marginal | RST Sl (8 w) | 2.472 m | 5.3% | 132 m | 0.7 [74] | ||
Beato et al. (2019) [102] | 18–21 M | Elite | 49.2 m | Marginal | RST COD (8 w) | 2.500 m | 7.8% | 196 m | 1.1 [74] | ||
Sanchez-Sanchez et al. (2019) [103] | 14.4 ± 0.5 M | Regional level | 65.9 m | Marginal | RST COD(8 w) | 914 m | 8.1% | 71 m | 1.1 [74] | ||
Sanchez-Sanchez et al. (2019) [103] | 14.7 ± 0.5 M | Regional level | 66.7 m | Marginal | RST COD (8 w) | 1.764 m | 2% | 34 m | 0.3 [74] | ||
Campos-Vazquez et al. (2015) [104] | 18.1 ± 0.8 M | Top-level national | 60.4 m | Marginal | RST + ST (8 w) | 2.297 m | 3.5% | 80 m | 0.5 [74] | ||
Haugen et al. (2014) [105] | 17 ± 1 F & M | High-school level | 133.8 m | Ok | RST (9 w) | 1.583 m | 17.4% | 275 m | 2.4 [74] | ||
Nyberg et al. (2016) [106] | 23.5 ± 4.0 M | Semi-professional, 2nd national league | 66 m | Marginal | RST (9 w) | 1.803 m | 11.6% | 324 m | 1.6 [74] | ||
Hostrup et al. (2019) [107] | 24.9 ± 5.4 M | Sub-elite, 2nd amateur league | 111.4 m | Marginal | RST (10 w) | 1.910 m | 1.6% | 30 m | 0.2 [74] | ||
Macpherson and Weston (2015) [108] | 25 ± 4 M | Semi-professional | 98.6 m | Marginal | SIT (2 w) | 1.523 m | 18.1% | 275 m | 2.5 [74] | ||
Howard & Stavrianeas (2017) [109] | 15.1 ± 0.8 M | High-shool level | 61.5 m | Marginal | SIT (10 w) | 741.6 m | 44% | 326 m | 6 [74] | ||
Arslan et al. (2020) [93] | 14.2 ± 0.5 M | Regional level | 30.4 m | Marginal | SSG (5 w) | 1.284 m | 12.8% | 188 m | 1.8 [74] | ||
Eniseler et al. (2017) [99] | 16.9 ± 1.1 M | Elite, national level | 77.6 m | Marginal | SSG (6 w) | 2.320 m | 4.8% | 112 m | 0.7 [74] | ||
Özcan et al. (2018) [91] | 18.4 ± 1.5 M | Amateur, regional level | 73.6 m | Marginal | SSG (6 w) | 1.235.5 m | 63.1% | 711 m | 7.2 [43] | ||
Hill-Hass et al. (2009) [68] | 14.6 ± 0.9 M | Elite | 9% | 116 m | 69 m | Marginal | SSG (7 w) | 1.488 m | 17.1% | 254 m | 1.9 |
Dello Iacono et al. (2019) [110] | 18.6 ± 0.6 M | International level | 27.6 m | Marginal | SSG (8 w) | 1.646 m | 20,9% | 344 m | 2.9 [74] |
Study | Age and Gender of the Participants | Level of the Participants | Typical Error of Measurement Expressed as Coefficient of Variation | Typical Error of Measurement (Noise) | Smallest Worthwhile Change (0.2× between Subjects SD) | Usefulness of the Test | Training Type and Duration | Initial Level | Usually Observed Change (Signal) Following a Training Program | Usually Observed Change (Signal) Following a Training Program | Signal-to-Noise Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Enright et al. (2018) [75] | 18.3 ± 0.2 M | Elite | 4.2% | 34 m | 31,2 m | Ok | 920 m | ||||
da Silva et al. (2011) [76] | 14 ± 0.8 M | Regional level | 11% | 49 m | 13.6 m | Marginal | 445.5 m | ||||
Thomas et al. (2006) [43] | 24.4 ± 6.0 M | Recreational level | 12.7% | 41 m | 22 m | Marginal | 325 m | ||||
Krustrup et al. (2006) [77] | 22–30 17–35 M | Healthy and elite | 9.6% | 65.5 m | 9.2 m | Marginal | Socc T (8 w) | 730 m | 42% | n/a | 4.4 |
Fanchini et al. (2014) [74] | 17 ± 1 M | Professional, 4th national division | 7.1% | 53.5 m | 33.2 m | Marginal | HIIT l + RST + SSG (11 w) | 718 m | 8.8% | 71 m | 1.2 |
Iaia et al. (2017) [111] | 17.0 ± 1.0 M | Sub-elite | 33.8 m | Ok | RST sh. rest (5 w) | 1.000 m | 11.4% | 111 m | 2.7 [75] | ||
Iaia et al. (2017) [111] | 17.0 ± 1.0 M | Sub-elite | 43.4 m | Good | RST lo. rest (5 w) | 1.016 m | 6.5% | 56 m | 1.5 [75] | ||
Sagelv et al. (2019) [112] | 16–19 M | High-level national | n/a | / | RST (22 w) | ≈890 m | 9.1% | / | 2.2 [75] | ||
Christensen et al. (2011) [113] | 23.4 ± 3.5 M | Elite, 3rd national level | 11.2 m | Marginal | SIT + SSG (2 w) | 937 m | 6.1% | 57 m | 1.5 [75] | ||
Thomassen et al. (2010) [114] | 23.4 ± 0.8 M | Elite | 11.2 m | Marginal | SIT + SSG (2 w) | 937 m | 6.1% | 57 m | 1.5 [75] | ||
Iaia et al. (2015) [115] | 18.5 ± 1 M | Professional, national level | 37 m | Ok | SIT (2′ rest) (3 w) | 927 m | 10.1% | 93 m | 2.4 [75] | ||
Iaia et al. (2015) [115] | 18.5 ± 1 M | Professional, national level | 45.2 m | Good | SIT (40″ rest) (3 w) | 989 m | 3.8% | 37 m | 0.9 [75] | ||
Mohr and Krustrup (2016) [116] | 19 ± 1 M | Sub-elite, university level | 13.6 m | Marginal | SIT (4 w) | 680 m | 49.7% | 298 m | 7 [74] | ||
Ingebrigtsen et al. (2013) [117] | 16.9 ± 0.6 M | Elite | 26.6 m | Marginal | SIT (6 w) | 559 m | 11.3% | 63 m | 1.6 [74] | ||
Mohr and Krustrup (2016) [116] | 19 ± 1 M | Sub-elite, university level | 10.4 m | Marginal | SSG (4 w) | 693 m | 25.8% | 165 m | 3.6 [74] |
Study | Age and Gender of the Participants | Level of the Participants | Typical Error of Measurement Expressed as Coefficient of Variation | Typical Error of Measurement (Noise) | Smallest Worthwhile Change (0.2× between Subjects SD) | Usefulness of the Test | Training Type and Duration | Initial Level | Usually Observed Change (Signal) Following a Training Program | Usually Observed Change (Signal) Following a Training Program | Signal-to-Noise Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
Čović et al. (2016) [63] | 22.8 ± 4.3 F | Elite | 1.8% | 0.31 km/h | 0.2 km/h | Marginal | 17.1 km/h | ||||
Thomas et al. (2016) [64] | 25.5 ± 4.3 M | Semi-professional | 2.5% | 1.0 km/h | 0.7 km/h | Marginal | n/a | ||||
Valladares-Rodríguez et al. (2017) [65] | 24.4 ± 5.6 M 23.3 ± 4.5 F | Professional futsal players | M: 1.5% M F: 1.5% F | M: 0.32 km/h F: 0.21 km/h | M: 0.34 km/hF: 0.26 km/h | Ok Ok | M: 20.2 km/h F: 17.4 km/h | ||||
Buchheit and Rabbani (2014) [58] | 15.4 ± 0.5 M | National level | 0.22 km/h | Marginal | HIIT l + SSG (8 w) | 17.4 km/h | 7% | 1.2 km/h | 4.7 [65] | ||
Dellal et al. (2012) [84] | 26.3 ± 4.7 M | Amateur | n/a | / | HIIT s (6 w) | ≈19.4 km/h | 5.8% | ≈1.3 km/ | 3.9 [65] | ||
Arazi et al. (2017) [118] | 23.4 ± 1.3 F | Semi-professional, regional level | 0.7 km/h | Marginal | HIIT s (6 w) | 12.7 km/h | 28.3% | 3.6 km/h | 11.3 [64] | ||
Paul et al. (2019) [119] | 16.2 ± 0.8 M | National level | 0.22 km/h | Marginal | HIIT s + SSG (4 w) | 17 km/h | 8.2% | 1.4 km/h | 5.5 [65] | ||
Rabbani et al. (2019) [120] | 24.1 ± 3.723.2 ± 2.2 M | Semi-professional, 2nd national level | 0.22 km/h 0.24 km/h | Marginal | HIIT s + SSG (4 w) | 19.5 km/h19.2 km/h | 6.9% & 6.2% | 1.3 & 1.2 km/h | 4.6 [65] 4.1 [65] | ||
Dellal et al. (2012) [84] | 26.3 ± 4.7 M | Amateur | n/a | / | SSG (6 w) | ≈19.5 km/h | 5.1% | ≈1 km/h | 3.4 [65] | ||
Campos-Vazquez et al. (2017) [121] | 27.7 ± 4.3 M | Professional, 2nd national level | 0.16 km/h | Marginal | Socc T + M (4 w) | 20.1 km/h | 5% | 1 km/h | 3.3 [65] |
Field Aerobic Fitness Test | Advantages | Disadvantages |
---|---|---|
UMTT/Vam Eval | Moderate to high reliability High criterion-related validity—best solution for the assessment of VO2max SWC smaller than one stage of the test Best for prescription of long format HIIT | Low to moderate sensitivity Marginal usefulness Athletic track required for testing |
20mSRT | Short-distance course required for testing Low end-test running speeds Short testing time High sensitivity Ok to good usefulness | Low to moderate reliability Moderate criterion-related validity for the assessment of VO2max SWC larger than one stage of the test Unsuitable for training prescription |
Yo-YoIRT1 | Short-distance course required for testing High sensitivity | Low reliability Low criterion-related validity for the assessment of VO2max Marginal usefulness SWC larger than one stage of the testUnsuitable for training prescription |
Yo-YoIRT2 | Short-distance course required for testing High sensitivity Very short testing time Medium usefulness SWC smaller than one stage of the test Appropriate for players with high aerobic and anaerobic fitness | Low reliability Very low criterion-related validity for the assessment of VO2max Not appropriate for players with low aerobic fitness Unsuitable for training prescription |
30-15IFT | Medium-size-distance course required for testing High reliability Excellent sensitivity Medium usefulness SWC smaller than one test stage Best for prescription of short format HIIT | Low criterion-related validity for the assessment of VO2max |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bok, D.; Foster, C. Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose? J. Funct. Morphol. Kinesiol. 2021, 6, 69. https://doi.org/10.3390/jfmk6030069
Bok D, Foster C. Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose? Journal of Functional Morphology and Kinesiology. 2021; 6(3):69. https://doi.org/10.3390/jfmk6030069
Chicago/Turabian StyleBok, Daniel, and Carl Foster. 2021. "Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose?" Journal of Functional Morphology and Kinesiology 6, no. 3: 69. https://doi.org/10.3390/jfmk6030069
APA StyleBok, D., & Foster, C. (2021). Applicability of Field Aerobic Fitness Tests in Soccer: Which One to Choose? Journal of Functional Morphology and Kinesiology, 6(3), 69. https://doi.org/10.3390/jfmk6030069