Analysis of the Contact Area for Three Types of Upper Limb Strikes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures of Data Collection
2.4. Instrumentation and Data Acquisition
2.5. Image Postprocessing
- (a)
- The image was loaded and cropped to the relevant region of interest (same for all images).
- (b)
- The image was converted into CIELAB color space. The first channel was extracted and normalized to 16-bit grayscale and represented as a matrix.
- (c)
- The components of the matrix were squared to increase the contrast and normalized again to a 16-bit grayscale.
- (d)
- A logical mask was created using a 40% contrast threshold.
- (e)
- Clusters smaller than 50 pixels were removed.
- (f)
- Possible holes in the mask were filled.
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Souza, V.A.; Marques, A.M. Relationship between age and expertise with the maximum impact force of a reverse punch by shotokan karate athletes. Arch. Budo 2017, 13, 243–254. [Google Scholar]
- Rinaldi, M.; Nasr, Y.; Atef, G.; Bini, F.; Varrecchia, T.; Conte, C.; Chini, G.; Ranavolo, A.; Draicchio, F.; Pierelli, F. Biomechanical characterization of the Junzuki karate punch: Indexes of performance. Eur. J. Sport Sci. 2018, 18, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Bolander, R.P.; Neto, O.P.; Bir, C.A. The effects of height and distance on the force production and acceleration in martial arts strikes. J. Sports Sci. Med. 2009, 8, 47–52. [Google Scholar] [PubMed]
- LoTurco, I.; Nakamura, F.Y.; Artioli, G.G.; Kobal, R.; Kitamura, K.; Abad, C.C.C.; Cruz, I.F.; Romano, F.; Pereira, L.A.; Franchini, E. Strength and power qualities are highly associated with punching impact in elite amateur boxers. J. Strength Cond. Res. 2016, 30, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Busko, K.; Staniak, Z.; Szark-Eckardt, M.; Nikolaidis, P.T.; Mazur-Rózycka, J.; Łach, P.; Michalski, R.; Gajewski, J.; Górski, M. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer. Acta Bioeng. Biomech. 2016, 18, 47–54. [Google Scholar] [CrossRef]
- Dyson, R.; Smith, M.; Fenn, L.; Martin, C. Differences in lead and rear hand punching forces, delivered at maximal speed relative to maximal force, by amateur boxers. In Proceedings of the 23th International Symposium on Biomechanics in Sports Conference, Beijing, China, 22–27 August 2005. [Google Scholar]
- Pierce, J.D.; Reinbold, K.A.; Lyngard, B.C.; Goldman, R.J.; Pastore, C.M. Direct Measurement of Punch Force During Six Professional Boxing Matches. J. Quant. Anal. Sports 2006, 2, 1–19. [Google Scholar] [CrossRef]
- Adamec, J.; Hofer, P.; Pittner, S.; Monticelli, F.; Graw, M.; Schöpfer, J. Biomechanical assessment of various punching techniques. Int. J. Legal Med. 2021, 135, 853–859. [Google Scholar] [CrossRef]
- Shoukat, H.A.; Rabail, M.I.; Mirza, S.; Toor, I.H.; Khan, S.J. Comparing Two Types of Punches (Jab and Cross) On the Basis of Maximum Impact and Muscle Involvement. In Proceedings of the 2020 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 22–23 February 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Vagner, M.; Malecek, J.; Tomšovský, L.; Kubový, P.; Levitova, A.; Stastny, P. Isokinetic Strength of Rotators, Flexors and Hip Extensors is Strongly Related to Front Kick Dynamics in Military Professionals. J. Hum. Kinet. 2019, 68, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Górski, M.; Orysiak, J. Differences between anthropometric indicators and the impact force of taekwondo kicks performed with the dominant and non-dominant limb. Biomed. Hum. Kinet. 2019, 11, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Gianino, C. Physics of Karate. Kinematics analysis of karate techniques by a digital movie camera. J. Phys. Educ. 2010, 4, 5. [Google Scholar]
- Chadli, S.; Ababou, N.; Ababou, A. A new instrument for punch analysis in boxing. Procedia Eng. 2014, 72, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Bingul, M.B.; Bulgan, C.T.; Aydin, M.; Bal, E. The effects of impact forces and kinematic of two different stance at straight punch techniques in boxing. Arch. Budo 2017, 13, 35–39. [Google Scholar]
- Atha, J.; Yeadon, M.R.; Sandover, J.; Parsons, K.C. The damaging punch. Br. Med. J. 1985, 291, 1756–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, T.M.; Liviu-Razvan, P. Correlation between Plantar Pressure and Striking Speed in Karate-do. Procedia Soc. Behav. Sci. 2014, 117, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Cesari, P.; Bertucco, M. Coupling between punch efficacy and body stability for elite karate. J. Sci. Med. Sport 2008, 11, 353–356. [Google Scholar] [CrossRef]
- Cheraghi, M.; Agha Alinejad, H.; Arshi, A.R.; Shirzad, E. Kinematics of Straight Right Punch in Boxing. Ann. Appl. Sport Sci. 2014, 2, 39–50. [Google Scholar] [CrossRef]
- Kimm, D.; Thiel, D.V. Hand speed measurements in boxing. Procedia Eng. 2015, 112, 502–506. [Google Scholar] [CrossRef] [Green Version]
- House, P.D.; Cowan, J.L. Predicting straight punch force of impact. J. Okla. Assoc. Health Phys. Educ. Recreat. Danc. 2015, 53, n.1. [Google Scholar]
- Renden, P.G.; Savelsbergh, G.J.P.; Oudejans, R.R.D. Effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Ergonomics 2017, 60, 669–679. [Google Scholar] [CrossRef]
- Farkash, U.; Dreyfuss, D.; Funk, S.; Dreyfuss, U. Prevalence and patterns of injury sustained during military hand-to-hand combat training (krav-maga). Mil. Med. 2017, 182, e2005–e2009. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.T.; Protopapas, M.; Bonato, P.; Burke, J.T.; Landrum, R.F. Martial arts: Time needed for training. Asian J. Sports Med. 2011, 2, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gašić, T.; Bubanj, S.; Živković, M.; Stanković, R.; Bubanj, R.; Obradović, B. Difference in the explosive strength of upper extremities between athletes in relation to their sport activity, type of engagement in sport and gender. Sport Sci. 2011, 4, 63–67. [Google Scholar]
- Tong-Iam, R.; Rachanavy, P.; Lawsirirat, C. Kinematic and kinetic analysis of throwing a straight punch: The role of trunk rotation in delivering a powerful straight punch. J. Phys. Educ. Sport 2017, 17, 2538–2543. [Google Scholar]
- Vveinhardt, J.; Kaspare, M. The Relationship between Mindfulness Practices and the Psychological State and Performance of Kyokushin Karate Athletes. Int. J. Environ. Res. Public Health 2022, 19, 4001. [Google Scholar] [CrossRef]
- Kingery, M.T.; Kouk, S.; Anil, U.; McCafferty, J.; Lemos, C.; Gelber, J.; Gonzalez-Lomas, G. Performance and return to sport after injury in professional mixed martial arts. Physician Sportsmed. 2021. [Google Scholar] [CrossRef]
- Turner, A.N. Strength and Conditioning for Muay Thai Athletes. Strength Cond. J. 2009, 31, 78–92. [Google Scholar] [CrossRef]
- Beranek, V.; Votapek, P.; Stastny, P. Force and velocity of impact during upper limb strikes in combat sports: A systematic review and meta-analysis. Sports Biomech. 2020, 1–19. [Google Scholar] [CrossRef]
- Potvin, J.R.; Chiang, J.; Mckean, C.; Stephens, A. A psychophysical study to determine acceptable limits for repetitive hand impact severity during automotive trim installation. Int. J. Ind. Ergon. 2000, 26, 625–637. [Google Scholar] [CrossRef]
- Hausmanninger, L.; Komnik, I.; Potthast, W. Hand as hammer: A comprehensive review of biomechanical studies related to occupational hand strikes. Hum. Factors Ergon. Manuf. Serv. Ind. 2019, 29, 361–371. [Google Scholar] [CrossRef]
- Neto, O.P.; Silva, J.H.; Marzullo, A.C.D.M.; Bolander, R.P.; Bir, C.A. The effect of hand dominance on martial arts strikes. Hum. Mov. Sci. 2012, 31, 824–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, O.P.; Magini, M.; Saba, M.M.; Pacheco, M.T. Comparison of force, power, and striking efficiency for a Kung Fu strike performed by novice and experienced practitioners: Preliminary analysis. Percept. Mot. Ski. 2008, 106, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Willinger, R.; Baumgartner, D. Human head tolerance limits to specific injury mechanisms. Int. J. Crashworthiness 2003, 8, 605–617. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Zhao, H. Biomechanical measurement and analysis of tai chi push-hand. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, IEEE ICMA, Harbin, China, 7–10 August 2016; pp. 541–545. [Google Scholar] [CrossRef]
- Muggenthaler, H.; Hubig, M.; Mall, G.; Lessig, R.; Stiller, D. Injury pattern and the biomechanical assessment of skull fracture risk in blows with a rubber mallet. Forensic Sci. Int. 2020, 312, 110303. [Google Scholar] [CrossRef]
- Menzel, T.; Potthast, W. Validation of a Novel Boxing Monitoring System to Detect and Analyse the Centre of Pressure Movement on the Boxer’s Fist. Sensors 2021, 21, 8394. [Google Scholar] [CrossRef]
- Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Chromik, K.; Stachoń, A. Asymmetry of musculature and hand grip strength in bodybuilders and martial artists. Int. J. Environ. Res. Public Health 2020, 17, 4695. [Google Scholar] [CrossRef]
- Vila, H.; Ferragut, C. Throwing speed in team handball: A systematic review. Int. J. Perform. 2019, 19, 724–736. [Google Scholar] [CrossRef]
- Ferragut, C.; Vila, H.; Abraldes, J.A.; Argudo, F.; Rodriguez, N.; Alcaraz, P.E. Relationship among maximal grip, throwing velocity and anthropometric parameters in elite water polo players. J. Sports Med. Phys. Fitness 2011, 51, 26–32. [Google Scholar]
- Bardo, A.; Kivell, T.L.; Town, K.; Donati, G.; Ballieux, H.; Stamate, C.; Forrester, G.S. Get a grip: Variation in human hand grip strength and implications for human evolution. Symmetry 2021, 13, 1142. [Google Scholar] [CrossRef]
- Wu, J.Z.; Sinsel, E.W.; Warren, C.M.; Welcome, D.E. An evaluation of the contact forces on the fingers when squeezing a spherical rehabilitation ball. Biomed. Mater. Eng. 2018, 29, 629–639. [Google Scholar] [CrossRef]
- Lijewski, M.; Burdukiewicz, A.; Stachoń, A.; Pietraszewska, J. Differences in anthropometric variables and muscle strength in relation to competitive level in male handball players. PLoS ONE 2021, 16, e0261141. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.J.; Shinde, P.; Xuedong, D.; Wiley, M.; Stentz, T.L. Impact to the base of the palm. In Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society, San Francisco, CA, USA, 16–20 October 2006; pp. 1401–1405. [Google Scholar] [CrossRef]
- Spartacus, V.; Shojaeizadeh, M.; Raffault, V.; Shoults, J.; van Wieren, K.; Sparrey, C.J. In vivo soft tissue compressive properties of the human hand. PLoS ONE 2021, 16, e0261008. [Google Scholar] [CrossRef] [PubMed]
- Pribis, P.; Burtnack, C.A.; Mckenzie, S.O.; Thayer, J. Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2010, 2, 1075–1085. [Google Scholar] [CrossRef] [Green Version]
- Pineau, J.; Filliard, J.R.; Bocquet, M. Ultrasound techniques applied to body fat measurement in male and female athletes. J. Athl. Train. 2009, 44, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Hicks, A.L.; Kent-Braun, J.; Ditor, D.S. Sex differences in human skeletal muscle fatigue. Exerc. Sport Sci. Rev. 2011, 29, 109–112. [Google Scholar] [CrossRef]
- Daly, R.M.; Saxon, L.; Turner, C.H.; Robling, A.G.; Bass, S.L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004, 34, 281–287. [Google Scholar] [CrossRef]
- Plato, C.C.; Wood, J.L.; Norris, A.H. Bilateral asymmetry in bone measurements of the hand and lateral hand dominance. Am. J. Phys. Anthropol. 1980, 52, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Tsou, J.Y.; Kao, C.L.; Hong, M.Y.; Chang, C.J.; Su, F.C.; Chi, C.H. How does the side of approach impact the force delivered during external chest compression? Am. J. Emerg. Med. 2021, 48, 67–72. [Google Scholar] [CrossRef]
- Choi, W.J.; Robinovitch, S.N. Pressure distribution over the palm region during forward falls on the outstretched hands. J. Biomech. 2011, 44, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Špringrová, I.P.; Ballyová, M.; Tomková, Š.; Bendíková, E. Comparison of hand arches in athletes. AIP Conf. Proc. 2019, 2186, 080010. [Google Scholar] [CrossRef]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Salarian, A. Intraclass Correlation Coefficient (ICC). MATLAB Central File Exchange. 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc (accessed on 13 May 2022).
- Malacko, J. Interaction between genetic and non-genetic potentials in the function of creation and development of sportsmen individuality. [Interakcija genetskih i negenetskih potencijala u funkciji kreiranja i razvoja individualnosti sportaša]. Sport Sci. 2009, 2, 36–40. [Google Scholar]
- Kondo, M.; Ogihara, M.; Shinoda, K.; Anada, S.; Ito, K.; Murata, M.; Tanaka, T.; Takai, S.; Matsu’ura, S. Sexual dimorphism in the human hand proportion: A radiographic study. Bull. Natl. Mus. Nat. Sci. 2017, 43, 1–6. [Google Scholar]
- Aboul-Hagag, K.E.; Mohamed, S.A.; Hilal, M.A.; Mohamed, E.A. Determination of sex from hand dimensions and index/ring finger length ratio in upper Egyptians. Egypt. J. Forensic Sci. 2011, 1, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Nuriye, K.B.; Esin, T.Ö. Anthropometric measurement of the hand. East. J. Med. 2018, 23, 298–301. [Google Scholar] [CrossRef]
- Hasan, K.R.; Ara, S.; Banna, F.A.M.H. Correlation of Index Finger Length (2D) with Height, Weight and BMI in Adult Bangladeshi Male. J. Enam Med. Coll. 2017, 7, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Ilayperuma, I.; Nanayakkara, G.; Palahepitiya, N. Prediction of personal stature based on the hand length. Galle Med. J. 2009, 14, 15–18. [Google Scholar] [CrossRef]
- Beranek, V.; Stastny, P.; Novacek, V.; Votapek, P.; Formanek, J. Upper Limb Strikes Reactive Forces in Mix Martial Art Athletes during Ground and Pound Tactics. Int. J. Environ. Res. Public Health 2020, 17, 7782. [Google Scholar] [CrossRef]
- Yoganandan, N.; Pintar, F.A.; Sances, A.; Walsh, P.R.; Ewing, C.L.; Thomas, D.J.; Snyder, R.G. Biomechanics of skull fracture. J. Neurotrauma 1995, 12, 659–668. [Google Scholar] [CrossRef]
- Youman, J. Neurological Surgery; WB Saunders: Philadelphia, PA, USA, 1996; p. 3729. [Google Scholar]
- Tözeren, A. Human Body Dynamics: Classical Mechanics and Human Movement; Springer: New York, NY, USA, 2000. [Google Scholar]
- Raymond, D.; Van Ee, C.; Crawford, G.; Bir, C. Tolerance of the skull to blunt ballistic temporo-parietal impact. J. Biomech. 2009, 42, 2479–2485. [Google Scholar] [CrossRef]
- Obrębska, P.; Skubich, J.; Piszczatowski, S. Gender differences in the knee joint loadings during gait. Gait Posture 2020, 79, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Schorer, J. The Southpaw Advantage? Lateral Preference in Mixed Martial Arts. PLoS ONE 2013, 8, e79793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men (n = 38) | Women (n = 38) | All Subjects (n = 76) | |
---|---|---|---|
Age (years) | 27.9 ± 7.0 (19–43) | 26.6 ± 9.8 (19–52) | 27.3 ± 8.5 (19–52) |
Weight (kg) | 81.5 ± 13.8 (60–110) | 66.2 ± 8.8 (47–89) | 73.9 ± 13.8 (47–110) |
Height (cm) | 178.2 ± 7.7 (160–198) | 168.4 ± 5.8 (158–178) | 173.3 ± 8.4 (158–198) |
Technique | Subjects | Mean ± SD (Minimum-Maximum) |
---|---|---|
Direct | All | 33.8 ± 8.9 (11.7–55.3) |
Men | 33.7 ± 8.8 (19.5–55.3) | |
Women | 33.8 ± 9.0 (11.7–50.2) | |
Elbow | All | 17.2 ± 5.6 (6.0–33.4) |
Men | 16.0 ± 4.6 (9.5–30.6) | |
Women | 18.4 ± 6.3 (6.0–33.4) | |
Palm | All | 45.8 ± 7.7 (27.6–67.2) |
Men | 47.9 ± 8.2 (27.6–67.2) | |
Women | 43.7 ± 6.5 (32.2–57.7) | |
All | All (n = 76) | 33.8 ± 8.9 (11.7–55.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beranek, V.; Stastny, P.; Turquier, F.; Novacek, V.; Votapek, P. Analysis of the Contact Area for Three Types of Upper Limb Strikes. J. Funct. Morphol. Kinesiol. 2022, 7, 50. https://doi.org/10.3390/jfmk7020050
Beranek V, Stastny P, Turquier F, Novacek V, Votapek P. Analysis of the Contact Area for Three Types of Upper Limb Strikes. Journal of Functional Morphology and Kinesiology. 2022; 7(2):50. https://doi.org/10.3390/jfmk7020050
Chicago/Turabian StyleBeranek, Vaclav, Petr Stastny, Frederic Turquier, Vit Novacek, and Petr Votapek. 2022. "Analysis of the Contact Area for Three Types of Upper Limb Strikes" Journal of Functional Morphology and Kinesiology 7, no. 2: 50. https://doi.org/10.3390/jfmk7020050
APA StyleBeranek, V., Stastny, P., Turquier, F., Novacek, V., & Votapek, P. (2022). Analysis of the Contact Area for Three Types of Upper Limb Strikes. Journal of Functional Morphology and Kinesiology, 7(2), 50. https://doi.org/10.3390/jfmk7020050