Modified Isoinertial-Based Ruffier Test in Healthy Individuals: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isoinertial Machine
2.2. Experimental Setup
2.3. Equivalence Test
2.4. Multiple Linear Regression Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catley, M.J.; Tomkinson, G.R. Normative health-related fitness values for children: Analysis of 85347 test results on 9–17-year-old Australians since 1985. Br. J. Sport. Med. 2013, 47, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Garcia, M.; Marin-Jimenez, N.; Perez-Bey, A.; Sánchez-Oliva, D.; Camiletti-Moiron, D.; Alvarez-Gallardo, I.C.; Ortega, F.B.; Castro-Piñero, J. Reliability of Field-Based Fitness Tests in Adults: A Systematic Review. Sport. Med. 2022, 52, 1961–1979. [Google Scholar] [CrossRef] [PubMed]
- Artero, E.G.; España-Romero, V.; Castro-Piñero, J.; Ortega, F.B.; Suni, J.; Castillo-Garzon, M.J.; Ruiz, J.R. Reliability of field-based fitness tests in youth. Int. J. Sport. Med. 2011, 32, 159–169. [Google Scholar] [CrossRef]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion-Related Validity of Sit-and-Reach Tests for Estimating Hamstring and Lumbar Extensibility: A Meta-Analysis. J. Sport. Sci. Med. 2014, 13, 1–14. [Google Scholar]
- Bruggeman, B.S.; Vincent, H.K.; Chi, X.; Filipp, S.L.; Mercado, R.; Modave, F.; Guo, Y.; Gurka, M.J.; Bernier, A. Simple tests of cardiorespiratory fitness in a pediatric population. PLoS ONE 2020, 15, e0238863. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126. [Google Scholar] [PubMed]
- Cooper, K.H. A means of assessing maximal oxygen intake: Correlation between field and treadmill testing. Jama 1968, 203, 201–204. [Google Scholar] [CrossRef]
- Leger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict O2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Peric, R.; Nikolovski, Z. Validation of four indirect VO2max laboratory prediction tests in the case of soccer players. J. Phys. Educ. Sport 2017, 17, 608. [Google Scholar]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Imboden, M.T.; Harber, M.P.; Whaley, M.H.; Finch, W.H.; Bishop, D.L.; Kaminsky, L.A. Cardiorespiratory Fitness and Mortality in Healthy Men and Women. J. Am. Coll. Cardiol. 2018, 72, 2283–2292. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.J.; Smith, S.C., Jr.; Orringer, C.E.; Rigotti, N.A.; Navar, A.M.; Khan, S.S.; Jones, D.W.; Goldberg, R.; Mora, S.; Blaha, M.; et al. Managing Atherosclerotic Cardiovascular Risk in Young Adults: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 819–836. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, L.A.; Arena, R.; Beckie, T.M.; Brubaker, P.H.; Church, T.S.; Forman, D.E.; Franklin, B.A.; Gulati, M.; Lavie, C.J.; Myers, J.; et al. The Importance of Cardiorespiratory Fitness in the United States: The Need for a National Registry. Circulation 2013, 127, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sport. Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sport. Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Sartor, F.; Vernillo, G.; de Morree, H.M.; Bonomi, A.G.; La Torre, A.; Kubis, H.P.; Veicsteinas, A. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sport. Med. 2013, 43, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Sim, J.; Eston, R.G.; Hession, R.; Fox, R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br. J. Sport. Med. 2004, 38, 197–205. [Google Scholar] [CrossRef]
- Wittink, H.; Blatter, T.; Outermans, J.; Volkers, M.; Westers, P.; Verschuren, O. Feasibility, reproducibility and validity of the 10 meter Shuttle Test in mild to moderately impaired people with stroke. PLoS ONE 2020, 15, e0239203. [Google Scholar] [CrossRef]
- Zanevskyy, I.; Janiszewska, R.; Zanevska, L. Validity of Ruffier Test in Evaluation of Resistance to the Physical Effort. J. Test. Eval. 2017, 45, 20160380. [Google Scholar] [CrossRef]
- Bruneau, A.; Le Faucheur, A.; Mahe, G.; Vielle, B.; Leftheriotis, G.; Abraham, P. Endofibrosis in athletes: Is a simple bedside exercise helpful or sufficient for the diagnosis? Clin. J. Sport Med. 2009, 19, 282–286. [Google Scholar] [CrossRef]
- Piquet, L.; Dalmay, F.; Ayoub, J.; Vandroux, J.C.; Menier, R.; Antonini, M.T.; Pourcelot, L. Study of blood flow parameters measured in femoral artery after exercise: Correlation with maximum oxygen uptake. Ultrasound Med. Biol. 2000, 26, 1001–1007. [Google Scholar] [CrossRef]
- Alahmari, K.A.; Rengaramanujam, K.; Reddy, R.S.; Samuel, P.S.; Kakaraparthi, V.N.; Ahmad, I.; Tedla, J.S. Cardiorespiratory Fitness as a Correlate of Cardiovascular, Anthropometric, and Physical Risk Factors: Using the Ruffier Test as a Template. Can. Respir. J. 2020, 2020, 3407345. [Google Scholar] [CrossRef] [PubMed]
- Zawadka, M.; Smolka, J.; Skublewska-Paszkowska, M.; Lukasik, E.; Gawda, P. How Are Squat Timing and Kinematics in The Sagittal Plane Related to Squat Depth? J. Sport. Sci. Med. 2020, 19, 500–507. [Google Scholar]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef]
- Prieto Mondragón, L.; Camargo Rojas, D.; Quinceno, C. Isoinertial technology for rehabilitation and prevention of muscle injuries of soccer players: Literature review. Rev. Fac. Med. 2016, 64, 543. [Google Scholar] [CrossRef]
- Fisher, J.P.; Ravalli, S.; Carlson, L.; Bridgeman, L.A.; Roggio, F.; Scuderi, S.; Maniaci, M.; Cortis, C.; Fusco, A.; Musumeci, G. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Utility and Advantages of the Eccentric Training through the Isoinertial System. J. Funct. Morphol. Kinesiol. 2020, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, M.W.; Roberts, M.; Price, M.J.; Kay, A.D. Effects of Flywheel Training With Eccentric Overload on Standing Balance, Mobility, Physical Function, Muscle Thickness, and Muscle Quality in Older Adults. J. Strength Cond. Res. 2022, 36, 3190–3199. [Google Scholar] [CrossRef]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sport. Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef]
- Banyard, H.G.; Tufano, J.J.; Delgado, J.; Thompson, S.W.; Nosaka, K. Comparison of the effects of velocity-based training methods and traditional 1RM-percent-based training prescription on acute kinetic and kinematic variables. Int. J. Sport. Physiol. Perform. 2019, 14, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Beato, M.; Bigby, A.E.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PLoS ONE 2019, 14, e0222466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroto-Izquierdo, S.; McBride, J.M.; Gonzalez-Diez, N.; García-López, D.; González-Gallego, J.; de Paz, J.A. Comparison of flywheel and pneumatic training on hypertrophy, strength, and power in professional handball players. Res. Q. Exerc. Sport 2022, 93, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.U.; Wolpert, C.; Wehling, M. How to measure heart rate? Eur. J. Clin. Pharmacol. 2004, 60, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bian, J.; Li, Q.; Leavitt, T.; Rosenberg, E.I.; Buford, T.W.; Smith, M.D.; Vincent, H.K.; Modave, F. A 3-minute test of cardiorespiratory fitness for use in primary care clinics. PLoS ONE 2018, 13, e0201598. [Google Scholar] [CrossRef] [Green Version]
- Lakens, D. Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Soc. Psychol. Personal. Sci. 2017, 8, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Sartor, F.; Bonato, M.; Papini, G.; Bosio, A.; Mohammed, R.A.; Bonomi, A.G.; Moore, J.P.; Merati, G.; La Torre, A.; Kubis, H.-P. A 45-Second Self-Test for Cardiorespiratory Fitness: Heart Rate-Based Estimation in Healthy Individuals. PLoS ONE 2016, 11, e0168154. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, B.J. Squatting kinematics and kinetics and their application to exercise performance. J. Strength Cond. Res. 2010, 24, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Wheatley, C.M.; Behnia, M.; Johnson, B.D. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers. PLoS ONE 2016, 11, e0160275. [Google Scholar] [CrossRef] [Green Version]
- Koons, N.J.; Suresh, M.R.; Schlotman, T.E.; Convertino, V.A. Interrelationship Between Sex, Age, Blood Volume, and (VO2max). Aerosp. Med. Hum. Perform. 2019, 90, 362–368. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Tomlin, D.L.; Wenger, H.A. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sport. Med. 2001, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.T.; Suadicani, P.; Hein, H.O.; Gyntelberg, F. Elevated resting heart rate, physical fitness and all-cause mortality: A 16-year follow-up in the Copenhagen Male Study. Heart 2013, 99, 882–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerf, M.; Abdelatif, H.; Mokhtar, M.; Ali, B. Height versus Weight which Cassel Parameter Determine Pulmonary Functions Fitness among the Algerians Soccer Players. J. Pulm. Respir. Med. 2016, 6, 353. [Google Scholar] [CrossRef]
- Hung, T.H.; Liao, P.A.; Chang, H.H.; Wang, J.H.; Wu, M.C. Examining the relationship between cardiorespiratory fitness and body weight status: Empirical evidence from a population-based survey of adults in Taiwan. Sci. World J. 2014, 2014, 463736. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gu, X. Effects of cardiorespiratory fitness and weight status on knowledge of physical activity and fitness, attitude toward physical education, and physical activity. BMC Public Health 2018, 18, 273. [Google Scholar] [CrossRef] [Green Version]
- Mänttäri, A.; Suni, J.; Sievänen, H.; Husu, P.; Vähä-Ypyä, H.; Valkeinen, H.; Tokola, K.; Vasankari, T. Six-minute walk test: A tool for predicting maximal aerobic power (VO2 max) in healthy adults. Clin. Physiol. Funct. Imaging 2018, 38, 1038–1045. [Google Scholar] [CrossRef]
- Björkman, F.; Ekblom-Bak, E.; Ekblom, Ö.; Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 2016, 116, 1627–1638. [Google Scholar] [CrossRef] [Green Version]
Overall n = 35 Mean (SD) | Men n = 20 Mean (SD) | Women n = 15 Mean (SD) | ||||
---|---|---|---|---|---|---|
Age (years) | 22.06 | (2.13) | 21.7 | (1.69) | 22.53 | (2.59) |
Height (cm) | 170.46 | (9.56) | 176.45 | (5.17) | 162.47 | (8.13) |
Weight (kg) | 69.57 | (11.19) | 75.35 | (8.63) | 61.87 | (9.58) |
BMI (Kg/m2) | 23.87 | (2.74) | 24.21 | (2.56) | 23.41 | (2.99) |
P1 (beats·min−1) | 69.57 | (9.93) | 67.15 | (10.4) | 72.8 | (8.56) |
P2 (beats·min−1) | 138.09 | (15.58) | 133.45 | (12.84) | 144.27 | (17.16) |
P3 (beats·min−1) | 106.14 | (17.42) | 105.25 | (14.82) | 107.33 | (20.88) |
P2-i (beats·min−1) | 135.23 | (14.57) | 131.55 | (13.06) | 140.13 | (15.45) |
P3-i (beats·min−1) | 105.97 | (18.74) | 105.25 | (18.67) | 106.93 | (19.44) |
VO2max (ml·kg−1·min−1) | 42.39 | (8.08) | 46.6 | (6) | 36.78 | (7.13) |
VO2max-i (ml·kg−1·min−1) | 41.93 | (8.11) | 46.16 | (5.7) | 36.29 | (7.5) |
RI-i | 11.08 | (3.62) | 10.39 | (3.47) | 11.99 | (3.75) |
RDI-i | 69.01 | (22.98) | 68.88 | (22.94) | 69.2 | (23.83) |
Multiple Linear Regression | LOOCV | Model Performance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | t | β | p | R2 | Adj. R2 | NRMSE | r2 | NMAE | Sensitivity | Specificity | k | |
Model 1 | 0.89 | 0.87 | 0.07 | 0.84 | 0.06 | 0.94 | 0.76 | 0.77 | |||||
Intercept | 93.36 | 6.73 | 13.86 | <0.001 | |||||||||
Gender | −17.28 | 1.29 | −13.3 | −1.07 | <0.001 | ||||||||
Age | −0.78 | 0.24 | −3.22 | −0.2 | <0.01 | ||||||||
Weight | −0.51 | 0.05 | −9 | −0.7 | <0.001 | ||||||||
P2-i − P1 | 0.07 | 0.03 | 2.09 | 0.22 | <0.05 | ||||||||
P2-i − P3-i | 0.15 | 0.04 | 3.51 | 0.12 | <0.01 | ||||||||
Model 2 | 0.94 | 0.93 | 0.05 | 0.92 | 0.04 | 0.89 | 0.81 | 0.81 | |||||
Intercept | 103.09 | 4.8 | 21.46 | <0.001 | |||||||||
Gender | −15.92 | 0.92 | −17.3 | −0.98 | <0.001 | ||||||||
Age | −0.78 | 0.17 | −4.52 | −0.2 | <0.001 | ||||||||
Weight | −0.56 | 0.04 | −13.75 | −0.77 | <0.001 | ||||||||
P2-i − P1 | 0.17 | 0.02 | 6.42 | 0.31 | <0.001 | ||||||||
RI-iso | −0.80 | 0.11 | −7.17 | −0.36 | <0.001 | ||||||||
Model 3 | 0.92 | 0.91 | 0.06 | 0.88 | 0.04 | 0.94 | 0.82 | 0.82 | |||||
Intercept | 95.33 | 5.67 | 16.80 | <0.001 | |||||||||
Gender | −17.01 | 1.09 | −15.50 | −1.05 | <0.001 | ||||||||
Age | −0.78 | 0.20 | −3.77 | −0.20 | <0.001 | ||||||||
Weight | −0.52 | 0.04 | −10.84 | −0.72 | <0.001 | ||||||||
P2-i − P1 | 0.29 | 0.04 | 6.01 | 0.54 | <0.001 | ||||||||
RDI-iso | −0.16 | 0.03 | −5.26 | −0.46 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trovato, B.; Roggio, F.; Petrigna, L.; Musumeci, G. Modified Isoinertial-Based Ruffier Test in Healthy Individuals: A Feasibility Study. J. Funct. Morphol. Kinesiol. 2023, 8, 36. https://doi.org/10.3390/jfmk8020036
Trovato B, Roggio F, Petrigna L, Musumeci G. Modified Isoinertial-Based Ruffier Test in Healthy Individuals: A Feasibility Study. Journal of Functional Morphology and Kinesiology. 2023; 8(2):36. https://doi.org/10.3390/jfmk8020036
Chicago/Turabian StyleTrovato, Bruno, Federico Roggio, Luca Petrigna, and Giuseppe Musumeci. 2023. "Modified Isoinertial-Based Ruffier Test in Healthy Individuals: A Feasibility Study" Journal of Functional Morphology and Kinesiology 8, no. 2: 36. https://doi.org/10.3390/jfmk8020036
APA StyleTrovato, B., Roggio, F., Petrigna, L., & Musumeci, G. (2023). Modified Isoinertial-Based Ruffier Test in Healthy Individuals: A Feasibility Study. Journal of Functional Morphology and Kinesiology, 8(2), 36. https://doi.org/10.3390/jfmk8020036