Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Sources, Studies Sections, and Data Extraction
2.4. Quality and Risk of Bias Assessment
3. Results
3.1. Protocol Characteristics
3.2. Quality Assessment and Risk of Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stania, M.; Juras, G.; Slomka, K.; Chmielewska, D.; Krol, P. The application of whole-body vibration in physiotherapy—A narrative review. Physiol. Int. 2016, 103, 133–145. [Google Scholar] [CrossRef]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport. Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef]
- Jordan, M.J.; Norris, S.R.; Smith, D.J.; Herzog, W. Vibration training: An overview of the area, training consequences, and future considerations. J. Strength Cond. Res. 2005, 19, 459–466. [Google Scholar] [CrossRef]
- Wen, J.; Leng, L.; Hu, M.; Hou, X.; Huang, J. Effects of whole-body vibration training on cognitive function: A systematic review. Front. Hum. Neurosci. 2023, 17, 854515. [Google Scholar] [CrossRef]
- Cochrane, D.J. The potential neural mechanisms of acute indirect vibration. J. Sport. Sci. Med. 2011, 10, 19–30. [Google Scholar]
- Musumeci, G. The use of vibration as physical exercise and therapy. J. Funct. Morphol. Kinesiol. 2017, 2, 17. [Google Scholar] [CrossRef]
- Cristi-Montero, C.; Cuevas, M.J.; Collado, P.S. Whole-body vibration training as complement to programs aimed at weight loss. Nutr. Hosp. 2013, 28, 1365–1371. [Google Scholar] [CrossRef]
- Cochrane, D.J. Vibration exercise: The potential benefits. Int. J. Sports Med. 2011, 32, 75–99. [Google Scholar] [CrossRef]
- Park, S.Y.; Son, W.M.; Kwon, O.S. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health. J. Exerc. Rehabil. 2015, 11, 289–295. [Google Scholar] [CrossRef]
- Bemben, D.; Stark, C.; Taiar, R.; Bernardo, M. Relevance of Whole-Body Vibration Exercises on Muscle Strength/Power and Bone of Elderly Individuals. Dose-Response 2018, 16, 1559325818813066. [Google Scholar] [CrossRef]
- Dolny, D.G.; Reyes, G.F.C. Whole Body Vibration Exercise: Training and Benefits. Curr. Sports Med. Rep. 2008, 7, 152–157. [Google Scholar] [CrossRef]
- Lachance, C.; Weir, P.; Kenno, K.; Horton, S. Is whole-body vibration beneficial for seniors? Eur. Rev. Aging Phys. Act. 2012, 9, 51–62. [Google Scholar] [CrossRef]
- de Oliveira Guedes-Aguiar, E.; da Cunha de Sá-Caputo, D.; Moreira-Marconi, E.; de Macêdo Uchôa, S.M.; de Barros, P.Z.; Valentin, E.K.; Bergmann, A.; Taiar, R.; Bernardo-Filho, M. Effect of whole-body vibration exercise in the pelvic floor muscles of healthy and unhealthy individuals: A narrative review. Transl. Androl. Urol. 2019, 8, 395–404. [Google Scholar] [CrossRef]
- Liu, P.Y.; Brummel-Smith, K.; Ilich, J.Z. Aerobic exercise and whole-body vibration in offsetting bone loss in older adults. J. Aging Res. 2011, 2011, 379674. [Google Scholar] [CrossRef]
- Gómez-Cabello, A.; Ara, I.; González-Agüero, A.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of training on bone mass in older adults: A systematic review. Sports Med. 2012, 42, 301–325. [Google Scholar] [CrossRef]
- Beck, B.R. Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy. Curr. Osteoporos. Rep. 2015, 13, 381–389. [Google Scholar] [CrossRef]
- DadeMatthews, O.O.; Agostinelli, P.J.; Neal, F.K.; Oladipupo, S.O.; Hirschhorn, R.M.; Wilson, A.E.; Sefton, J.M. Systematic review and meta-analyses on the effects of whole-body vibration on bone health. Complement. Ther. Med. 2022, 65, 102811. [Google Scholar] [CrossRef]
- Xu, J.C.; Lombardi, G.; Jiao, W.; Banfi, G. Effects of Exercise on Bone Status in Female Subjects, from Young Girls to Postmenopausal Women: An Overview of Systematic Reviews and Meta-Analyses. Sports Med. 2016, 46, 1165–1182. [Google Scholar] [CrossRef]
- Marin-Puyalto, J.; Gomez-Cabello, A.; Gonzalez-Agüero, A.; Gomez-Bruton, A.; Matute-Llorente, A.; Casajús, J.A.; Vicente-Rodríguez, G. Is Vibration Training Good for Your Bones? An Overview of Systematic Reviews. Biomed. Res. Int. 2018, 2018, 5178284. [Google Scholar] [CrossRef]
- Luo, J.; McNamara, B.; Moran, K. The use of vibration training to enhance muscle strength and power. Sports Med. 2005, 35, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ning, H.-T.; Xiao, S.-M.; Hu, M.-Y.; Wu, X.-Y.; Deng, H.-W.; Feng, H. Effects of vibration therapy on muscle mass, muscle strength and physical function in older adults with sarcopenia: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. 2020, 17, 14. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Z.; Li, X.; Lai, Z.; Wang, L. Effect of whole-body vibration on neuromuscular activation and explosive power of lower limb: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0278637. [Google Scholar] [CrossRef]
- Cardinale, M.; Wakeling, J. Whole body vibration exercise: Are vibrations good for you? Br. J. Sports Med. 2005, 39, 585–589; discussion 589. [Google Scholar] [CrossRef]
- Petrigna, L.; Pajaujiene, S.; Delextrat, A.; Gómez-López, M.; Paoli, A.; Palma, A.; Bianco, A. The importance of standard operating procedures in physical fitness assessment: A brief review. Sport. Sci. Health 2021, 18, 21–26. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar]
- Rauch, F.; Sievanen, H.; Boonen, S.; Cardinale, M.; Degens, H.; Felsenberg, D.; Roth, J.; Schoenau, E.; Verschueren, S.; Rittweger, J.; et al. Reporting whole-body vibration intervention studies: Recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J. Musculoskelet. Neuronal Interact. 2010, 10, 193–198. [Google Scholar]
- Rauch, F. Vibration therapy. Dev. Med. Child. Neurol. 2009, 51 (Suppl. S4), 166–168. [Google Scholar] [CrossRef]
- Shea, B.J.; Grimshaw, J.M.; Wells, G.A.; Boers, M.; Andersson, N.; Hamel, C.; Porter, A.C.; Tugwell, P.; Moher, D.; Bouter, L.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med. Res. Methodol. 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Hamel, C.; Wells, G.A.; Bouter, L.M.; Kristjansson, E.; Grimshaw, J.; Henry, D.A.; Boers, M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J. Clin. Epidemiol. 2009, 62, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Buehn, S.; Mathes, T.; Prengel, P.; Wegewitz, U.; Ostermann, T.; Robens, S.; Pieper, D. The risk of bias in systematic reviews tool showed fair reliability and good construct validity. J. Clin. Epidemiol. 2017, 91, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Barbosa, F.; del Pozo-Cruz, J.; del Pozo-Cruz, B.; Garcia-Hermoso, A.; Alfonso-Rosa, R.M. Effects of Whole-Body Vibration on Functional Mobility, Balance, Gait Strength, and Quality of Life in Institutionalized Older People: A Systematic Review and Meta-Analysis o f Randomized Controlled Trials. J. Aging Phys. Act. 2020, 28, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Ma, J.X.; Lu, B.; Ma, X.L. The effect of whole-body vibration training on lean mass: A PRISMA-compliant meta-analysis. Medicine 2017, 96, e8390. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.G.; Coutinho, H.; Martins, M.N.M.; Bernardo, M.; de Sá-Caputo, D.D.; de Oliveira, L.C.; Taiar, R. Impacts of Whole-Body Vibration on Muscle Strength, Power, and Endurance in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4467. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Vialleron, T.; Laffaye, G.; Fourcade, P.; Hussein, T.; Cheze, L.; Deleu, P.A.; Honeine, J.L.; Yiou, E.; Delafontaine, A. Long-Term Effects of Whole-Body Vibration on Human Gait: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 627. [Google Scholar] [CrossRef] [PubMed]
- Fratini, A.; Bonci, T.; Bull, A.M.J. Whole Body Vibration Treatments in Postmenopausal Women Can Improve Bone Mineral Density: Results of a Stimulus Focussed Meta-Analysis. PLoS ONE 2016, 11, e0166774. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Lesinski, M.; Fernandez-Del-Olmo, M.; Granacher, U. Small and inconsistent effects of whole body vibration on athletic performance: A systematic review and meta-analysis. Eur. J. Appl. Physiol. 2015, 115, 1605–1625. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.M.; Lau, R.W.; Chung, R.C.; Pang, M.Y. The effect of whole body vibration on balance, mobility and falls in older adults: A systematic review and meta-analysis. Maturitas 2012, 72, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.W.; Liao, L.R.; Yu, F.; Teo, T.; Chung, R.C.; Pang, M.Y. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: A systematic review and meta-analysis. Clin. Rehabil. 2011, 25, 975–988. [Google Scholar] [CrossRef]
- Ma, C.; Liu, A.; Sun, M.; Zhu, H.; Wu, H. Effect of whole-body vibration on reduction of bone loss and fall prevention in postmenopausal women: A meta-analysis and systematic review. J. Orthop. Surg. Res. 2016, 11, 24. [Google Scholar] [CrossRef]
- Marín-Cascales, E.; Alcaraz, P.E.; Ramos-Campo, D.J.; Martinez-Rodriguez, A.; Chung, L.H.; Rubio-Arias, J.Á. Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. Medicine 2018, 97, e11918. [Google Scholar] [CrossRef]
- Mikhael, M.; Orr, R.; Singh, M.A.F. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: A systematic review of the literature. Maturitas 2010, 66, 150–157. [Google Scholar] [CrossRef]
- Omidvar, M.; Alavinia, S.M.; Craven, B.C. The effects of whole body vibration therapy on reducing fat mass in the adult general population: A systematic review and meta-analyses. J. Musculoskelet. Neuronal Interact. 2019, 19, 455–464. [Google Scholar]
- Orr, R. The effect of whole body vibration exposure on balance and functional mobility in older adults: A systematic review and meta-analysis. Maturitas 2015, 80, 342–358. [Google Scholar] [CrossRef]
- Reis-Silva, A.; Coelho-Oliveira, A.C.; Moura-Fernandes, M.C.; Bessa, M.O.B.; Batouli-Santos, D.; Bernardo, M.; de Sá Caputo, D.D. Evidence of whole-body vibration exercises on body composition changes in older individuals: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1202613. [Google Scholar] [CrossRef]
- Rogan, S.; Hilfiker, R.; Herren, K.; Radlinger, L.; de Bruin, E.D. Effects of whole-body vibration on postural control in elderly: A systematic review and meta-analysis. BMC Geriatr. 2011, 11, 72. [Google Scholar] [CrossRef]
- Rogan, S.; de Bruin, E.D.; Radlinger, L.; Joehr, C.; Wyss, C.; Stuck, N.J.; Bruelhart, Y.; de Bie, R.A.; Hilfiker, R. Effects of whole-body vibration on proxies of muscle strength in old adults: A systematic review and meta-analysis on the role of physical capacity level. Eur. Rev. Aging Phys. Act. Off. J. Eur. Group. Res. Elder. Phys. Act. 2015, 12, 12. [Google Scholar] [CrossRef]
- Rogan, S.; Taeymans, J.; Radlinger, L.; Naepflin, S.; Ruppen, S.; Bruelhart, Y.; Hilfiker, R. Effects of whole-body vibration on postural control in elderly: An update of a systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2017, 73, 95–112. [Google Scholar] [CrossRef]
- Rubio-Arias, J.; Marín-Cascales, E.; Ramos-Campo, D.J.; Martínez-Rodríguez, A.; Chung, L.H.; Alcaraz, P.E. The effect of whole-body vibration training on lean mass in postmenopausal women: A systematic review and meta-analysis. Menopause 2017, 24, 225–231. [Google Scholar] [CrossRef]
- Slatkovska, L.; Alibhai, S.M.H.; Beyene, J.; Cheung, A.M. Effect of whole-body vibration on BMD: A systematic review and meta-analysis. Osteoporos. Int. 2010, 21, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Kiiski, J.; Heinonen, A.; Jarvinen, T.L.; Kannus, P.; Sievanen, H. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008, 23, 1318–1325. [Google Scholar] [CrossRef]
- Rasmussen, G. Human Body Vibration Exposure and Its Measurement; Brüel and Kjaer: Naerum, Denmark, 1982. [Google Scholar]
- Manimmanakorn, N.; Hamlin, M.J.; Ross, J.J.; Manimmanakorn, A. Long-term effect of whole body vibration training on jump height: Meta-analysis. J. Strength Cond. Res. 2014, 28, 1739–1750. [Google Scholar] [CrossRef] [PubMed]
- Al Masud, A.; Shen, C.L.; Chyu, M.C. On the Optimal Whole-Body Vibration Protocol for Muscle Strength. Biomechanics 2022, 2, 547–561. [Google Scholar] [CrossRef]
- Krajnak, K.; Riley, D.A.; Wu, J.; Mcdowell, T.; Welcome, D.E.; Xu, X.S.; Dong, R.G. Frequency-dependent effects of vibration on physiological systems: Experiments with animals and other human surrogates. Ind. Health 2012, 50, 343–353. [Google Scholar] [CrossRef]
- Park, H.-S.; Martin, B.J. Contribution of the tonic vibration reflex to muscle stress and muscle fatigue. Scand. J. Work Environ. Health 1993, 1993, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, R.; Gollhofer, A.; Kramer, A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur. J. Appl. Physiol. 2013, 113, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abercromby, A.F.; Amonette, W.E.; Layne, C.S.; Mcfarlin, B.K.; Hinman, M.R.; Paloski, W.H. Variation in neuromuscular responses during acute whole-body vibration exercise. Med. Sci. Sports Exerc. 2007, 39, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Abercromby, A.F.; Amonette, W.E.; Layne, C.S.; McFarlin, B.K.; Hinman, M.R.; Paloski, W.H. Vibration exposure and biodynamic responses during whole-body vibration training. Med. Sci. Sports Exerc. 2007, 39, 1794. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Oliveira, R.G.; Pires-Oliveira, D.A. Effects of whole body vibration on bone mineral density in postmenopausal women: A systematic review and meta-analysis. Osteoporos. Int. 2016, 27, 2913–2933. [Google Scholar] [CrossRef]
Author, Year | Guideline | Databases | N. of Reviews | Objective | Quality Score: Mean | Conclusion |
---|---|---|---|---|---|---|
Alvarez-Barbosa, 2020 [32] | PRISMA | AMED; CINAHL; Embase; Medline; PsycINFO; Scopus; Ebsco; WoK | 10 | Quantify the effect of WBV on balance, functional mobility, gait, functional performance, and quality of life | PEDro score: good | WBV could have benefits for functional mobility |
Chen, 2017 [33] | PRISMA | WoK; Medline; Scopus; Embase; Cochrane Library | 10 | Evaluate the effects of WBVT on lean mass | Cochrane Handbook | WBV could improve lean or muscle mass in young adults. No dependency on the parameters, dose, and intervention |
de Oliveira, 2023 [34] | PRISMA | Medline; Embase, CENTRAL, CINAHL, SPORTDiscus, WoK, LILACS, PEDro | 35 | Verify the effect of WBV on strength, power, and muscular endurance in older adults. | PEDro scale: fair | WBV increases lower-limb muscle strength but not power and muscle endurance |
Fischer, 2019 [35] | PRISMA | Medline; Science Direct; Springer; Sage | 46 | Evaluate long-term effects of WBV training on gait | PEDro scale: fair | WBV training improves balance and gait speed in the elderly |
Fratini, 2016 [36] | Cochrane Handbook, PRISMA | Medline; Cochrane Library; IEEE Xplore; Scopus; WoK | 9 | Evaluate the effect of WBV on bone mineral density | Possible bias | WBV treatments in elderly women can reduce BMD decline |
Hortobágyi, 2015 [37] | NI | Medline, Web, WoK; and SportDiscus | 21 | Quantify the acute and chronic effects of WBV on athletic performance | PEDro score: fair | WBV has small and inconsistent acute and chronic effects on the athletic performance of athletes |
Lam, 2012 [38] | NI | Medline; Excerpta Medica; CINAHL; Cochrane Library; PEDro; Science Citation Index | 9 | Effect of WBV on balance, mobility, and falls | PEDro score: fair | WBV on other balance/mobility outcomes and fall rates remains inconclusive. WBV seems effective in improving relatively balance ability and mobility, particularly in frailer subjects |
Lau, 2011 [39] | NI | Medline; PEDro; CINAHL; Science Citation Index; Embase | 18 | Effect of WBV on bone mineral density and leg muscle strength | PEDro scale: fair | WBV is beneficial for enhancing leg muscle strength |
Ma, 2016 [40] | Cochrane Handbook; PRISMA | Embase; WoK; Medline; Cochrane Library; China National Knowledge Infrastructure | 8 | Examine WBV effect on bone mineral density and fall prevention | 12-item scale: moderate-high | Low-magnitude WBV therapy can provide a significant improvement in reducing bone loss in the lumbar spine. WBV can be used as an intervention for fall prevention |
Marín-Cascales, 2018 [41] | PRISMA | Medline; WoK; Cochrane Library | 10 | Effect of WBV training on total, bone mineral density and identifying the potential moderating factors explaining the adaptations | PEDro scale: good | WBV is an effective method to improve lumbar spine BMD in postmenopausal and older women and to enhance femoral neck BMD in postmenopausal women younger than 65 years |
Mikhael, 2010 [42] | NI | Medline; WoK; Scopus; SPORTDiscus; AMED AusportMed; CINAHL | 6 | Examine the effect of WBV on muscle or bone morphology and function | NI | Weak support for the efficacy of WBV exposure for muscle function, muscle morphology, or bone architecture |
Omidvar, 2019 [43] | PRISMA | Medline; Embase; Cochrane Library; CINAHL | 7 | Describe the efficacy of WBV for reducing fat mass | Cochrane Handbook: unclear | Significant effect of WBV on total fat mass (kg); however, clinically insignificant effects on % of body fat |
Orr, 2015 [44] | NI | NI | 20 | Effect of WBV on balance and functional mobility | PEDro score: fair to good | Some but inconclusive evidence for an overall effect of WBV on selected balance and mobility measures |
Reis-Silva, 2023 [45] | PRISMA | Medline; Embase, WoK, Scopus | 8 | Effect of WBV on body composition in older adults | Cochrane Handbook: unclear | WBV seems to improve neuromuscular activation and explosive power but further research is required. |
Rogan, 2011 [46] | PRISMA | Medline; PEDro; Cinahl; Cochrane Library | 15 | Summarize the current evidence for WBV interventions on postural control | Cochrane Handbook: moderate | Beneficial effect on dynamic balance |
Rogan, 2015 [47] | PRISMA | Medline; Cochrane Library; PEDro; Other | 38 | WBV on strength, power, rate of force development, and functional strength | Cochrane Handbook: fair | Beneficial effects mainly in people not able to perform standard exercises |
Rogan, 2017 [48] | PRISMA | Medline; Cochrane Library; PEDro; CINAHL | 33 | Effects of WBV on balance | Cochrane Handbook: fair | WBV can be used to improve static balance |
Rubio-Arias, 2017 [49] | PRISMA | Medline; WoK; Cochrane Library | 5 | Valuate the effects of WBV on lean mass | PEDro scale: high | WBV alone may not be a sufficient stimulus to increase lean mass |
Slatkovska, 2010 [50] | Cochrane Handbook | Medline; Embase; Cochrane Library; CINAHL; Ebsco; ProQuest | 8 | Examining effect of WBV on bone mineral density | Selection and attrition bias detected in most of the studies | Significant but small improvements in BMD in postmenopausal women and children and adolescents, but not in young adults |
Author, Year | Population | Duration (Weeks) | Training | WBV Characteristics |
---|---|---|---|---|
Alvarez-Barbosa, 2020 [32] | institutionalized older adults | >6 | 2–3 sessions/week. Dynamic Vertical. 3–10 bouts of 30–60 s. Rest 60-s; Sinusoidal. 5 series of 15 s. Rest: 30 s | Vertical. F: 10–40 Hz; P: 3–7 mm; A: 1.6–2.2 g; Sinusoidal. F: 30 Hz; P: 2 mm |
Chen, 2017 [33] | mix sample | >6 | 2–5 sessions/week of 4–20 min | F: 12.5–40 Hz; P: 0–14 mm; A: 0.3–12.9 g |
de Oliveira, 2023 [34] | Older adults | >1 | 2–3 sessions/week of 2–30 min. Static | F: 5–60 Hz; P: 0.1–14 mm; 0.1–20.5 g |
Fischer, 2019 [35] | mix sample | >4 | 2–5 sessions/week of 4–20 min. 1–135 sets per training session of 10–180 s. 3–300 s rest. Dynamic | F: 2–45 Hz; P: 0.4–20 mm |
Fratini, 2016 [36] | postmenopausal women | NI | NI | F: 12.5–40 Hz; A: 0.3–18 g |
Hortobágyi, 2015 [37] | Young | >4 | 2/3 session/week of 20–300 s | Vertical; side-alternating vibration. F: 25–45 Hz; P: 0.8–8.0 mm; A: 52–386 m/s2 |
Lam, 2012 [38] | older adults | >6 | 1–5 sessions/week from 1 to 27 sets of 15–180 s. | Vertical; side-alternating vibration. F: 10–54 Hz; P: 0.05–5 mm |
Lau, 2011 [39] | older adults | >6 | 1–7 sessions/week Vibration usually delivered in bouts (1–27 of 30 s), with intermittent rest | F: 10–54 Hz; P: 0.05–8 mm; A: 0.05–32.2 g |
Ma, 2016 [40] | postmenopausal women | NI | NI | F: 12.6–40 Hz |
Marín-Cascales, 2018 [41] | postmenopausal women | >12 | 2–7 sessions/week of 90–1800 s Dynamic | F: 12.5–50 Hz; P: 1.5–12 mm; A: 0.2–20.12 m/s2 |
Mikhael, 2010 [42] | Older adults | 1–7 sessions/week of 0.5–10 min. Continuous or intermittent. Dynamic | F: 12–50 Hz; P: 0.2–8 mm; A: 0.1–22 g | |
Omidvar, 2019 [43] | adult mix sample | >6 | NI Dynamic | Vertical: F: 20–50 Hz; P: 2–6 mm Side-alternating: F 12–27 Hz; P: 1.5–4 mm |
Orr, 2015 [44] | older adults | >6 | Continuous (3–20 min); Intermittent. 2–100 min a week Dynamic | F: 6–40 Hz, A: 0.3–14.5 g; P: <0.1–8 mm |
Reis-Silva, 2023 [45] | older adults | NI | Series of 15–60 s; 15–60 s rest Static-Dynamic | F: 10–40 Hz; P: 1.7–5 mm |
Rogan, 2011 [46] | older adults | >6 | 3 sessions/week of 3–10 series of 30–60 s; 30–60 s rest Dynamic | F: 12–40 Hz; P: 0.5–8 mm |
Rogan, 2015 [47] | older adults | >6 | 2–5 sessions/week of 1–12 sets of 15–90 s. 15–60 s rest Dynamic | Sinusoidal vertical F: 25–40 Hz, P: 2–4 mm. Sinusoidal side-alternating. F: 2.5–35 Hz; P: 0.05–12 mm |
Rogan, 2017 [48] | older adults | >4 | 1–5 sessions/week of 2–15 sets of 15–72 s; 30–80 s rest. Dynamic | F: 12–40 Hz; P: 0.5–8 mm; A: 0.3 g |
Rubio-Arias, 2017 [49] | postmenopausal women | >8 | 2–5 sessions/week of 300–1800 s | F: 12.5–40 Hz; P: 0–14 mm; A: 0.3–9.86 m/s2 |
Slatkovska, 2010 [50] | mix sample | >24 | NI | F: 12–90 Hz |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alvarez-Barbosa, 2020 [32] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
Chen, 2017 [33] | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 5 |
de Oliveira, 2023 [34] | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 8 |
Fischer, 2019 [35] | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 7 |
Fratini, 2016 [36] | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5 |
Hortobágyi, 2015 [37] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
Lau, 2011 [39] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 7 |
Lam, 2012 [38] | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Ma, 2016 [40] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 7 |
Marín-Cascales, 2018 [41] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
Mikhael, 2010 [42] | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 6 |
Omidvar, 2019 [43] | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 |
Orr, 2015 [44] | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
Reis-Silva, 2023 [45] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 9 |
Rogan; 2011 [46] | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Rogan; 2015 [47] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Rogan; 2017 [48] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Rubio-Arias, 2017 [49] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
Slatkovska, 2010 [50] | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 6 |
1 | 2 | 3 | 4 | a | b | c | Risk of Bias | |
---|---|---|---|---|---|---|---|---|
Alvarez-Barbosa, 2020 [32] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Chen, 2017 [33] | High | Unclear | Unclear | Low | Unclear | Low | Unclear | Unclear |
de Oliveira, 2023 [34] | Low | Low | Low | Low | Low | Unclear | Low | Low |
Fischer, 2019 [35] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Fratini, 2016 [36] | Unclear | Low | Unclear | Low | Unclear | Low | Unclear | Unclear |
Hortobágyi, 2015 [37] | Unclear | High | Unclear | Low | Unclear | Unclear | Low | Unclear |
Lam, 2012 [38] | Low | Low | Unclear | Low | Low | Low | Unclear | Low |
Lau, 2011 [39] | Unclear | Low | Unclear | Low | Low | Low | Low | Low |
Ma, 2016 [40] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Marín-Cascales, 2018 [41] | Unclear | High | Low | Low | Unclear | Low | Low | Unclear |
Mikhael, 2010 [42] | Unclear | High | Unclear | Low | Unclear | Unclear | Low | Unclear |
Omidvar, 2019 [43] | Low | Unclear | Unclear | Unclear | Unclear | Unclear | Low | Unclear |
Orr, 2015 [44] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Reis-Silva, 2023 [45] | Low | Unclear | Low | Low | Low | Low | Low | Low |
Rogan; 2011 [46] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Rogan; 2015 [47] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Rogan; 2017 [48] | Unclear | Low | Low | Low | Low | Low | Low | Low |
Rubio-Arias, 2017 [49] | Unclear | Unclear | Low | Low | Unclear | Unclear | Low | Unclear |
Slatkovska, 2010 [50] | Unclear | High | Low | Low | Unclear | Low | Low | Unclear |
Goal | Frequency | Magnitude | Amplitude | Number of Series | Weekly Frequency |
---|---|---|---|---|---|
Improve muscle strength | 20–60 Hz | >1 g | Around 12 mm | 3–10 series of 60 s with 60 s rest | 2–3 times |
Improve bone mineral density | 10–20 Hz | >1 g | Around 4 mm | 3–10 series of 60 s with 60 s rest | 2–3 times |
Mobility and postural balance | 10–40 Hz | >1 g | Around 8 mm | 3–10 series of 60 s with 60 s rest | 2–4 times |
Body composition | 10–50 Hz | 0.3–9.86 m/s2 | Around 6 mm | 3–10 series of 60 s with 60 s rest | 2–5 times |
Generic indications | Adopt a static position, barefoot, feed shoulder-width apart, use a handrail. The vibration design suggested is side-alternating and sinusoidal. Supervision is required at the beginning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrigna, L.; Amato, A.; Sortino, M.; Trovato, B.; Zanghì, M.; Roggio, F.; Musumeci, G. Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review. J. Funct. Morphol. Kinesiol. 2024, 9, 100. https://doi.org/10.3390/jfmk9020100
Petrigna L, Amato A, Sortino M, Trovato B, Zanghì M, Roggio F, Musumeci G. Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review. Journal of Functional Morphology and Kinesiology. 2024; 9(2):100. https://doi.org/10.3390/jfmk9020100
Chicago/Turabian StylePetrigna, Luca, Alessandra Amato, Martina Sortino, Bruno Trovato, Marta Zanghì, Federico Roggio, and Giuseppe Musumeci. 2024. "Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review" Journal of Functional Morphology and Kinesiology 9, no. 2: 100. https://doi.org/10.3390/jfmk9020100
APA StylePetrigna, L., Amato, A., Sortino, M., Trovato, B., Zanghì, M., Roggio, F., & Musumeci, G. (2024). Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review. Journal of Functional Morphology and Kinesiology, 9(2), 100. https://doi.org/10.3390/jfmk9020100