Strategies for Improving Firefighter Health On-Shift: A Review
Abstract
:1. Introduction
2. Methods
2.1. Training
2.1.1. Training On-Shift
2.1.2. Types of Training
2.1.3. Adaptations to HIIT
2.1.4. Adaptations to Resistance Training
2.2. Nutrition
2.2.1. Protein Consumption
2.2.2. Caloric Restriction Modalities
2.2.3. Dietary Supplements and Ergogenic Aids
2.3. Impacting Firefighter Health
2.3.1. Reducing Obesity
2.3.2. Lowering Cardiovascular Disease Risk
2.3.3. Decreasing Musculoskeletal Injuries
2.3.4. Improving Occupational Performance
2.4. Implementation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fahy, R.; Evarts, B.; Stein, G.P. US Fire Department Profile 2020 (NFPA®) Key Findings Background and Objectives; National Fire Protection Association: Quincy, MA, USA, 2022. [Google Scholar]
- Campbell, R.; Hall, S. United States Firefighter Injuries in 2021; NFPA Research; National Fire Protection Association: Quincy, MA, USA, 2022. [Google Scholar]
- TriData Corporation. The Economic Consequences of Firefighter Injuries and Their Prevention; Final Report; U.S. Department of Commerce and National Institute of Standards and Technology: Arlington, VA, USA, 2005; pp. 1–49. [Google Scholar]
- Ras, J.; Smith, D.L.; Kengne, A.P.; Soteriades, E.S.; Leach, L. Physical fitness, cardiovascular and musculoskeletal health, and occupational performance in firefighters. Front. Public Health 2023, 11, 1241250. [Google Scholar] [CrossRef]
- Smith, D.L. Firefighter fitness: Improving performance and preventing injuries and fatalities. Curr. Sports Med. Rep. 2011, 10, 167–172. [Google Scholar] [CrossRef]
- Smith, D.L.; Graham, E.L.; Douglas, J.A.; Jack, K.; Conner, M.J.; Arena, R.; Chaudhry, S. Subclinical Cardiac Dysfunction is Associated with Reduced Cardiorespiratory Fitness and Cardiometabolic Risk Factors in Firefighters. Am. J. Med. 2022, 135, 752–760. [Google Scholar] [CrossRef]
- Soteriades, E.S.; Hauser, R.; Kawachi, I.; Liarokapis, D.; Christiani, D.C.; Kales, S.N. Obesity and Cardiovascular Disease Risk Factors in Firefighters: A Prospective Cohort Study. Obes. Res. 2005, 13, 1756–1763. [Google Scholar] [CrossRef]
- Houston Fire Department. Firefighter Shift Calendar. Available online: https://www.houstontx.gov/fire/firefighterinfo/shifts.html (accessed on 1 September 2023).
- Lubbock Fire Rescue. Employment. Available online: https://ci.lubbock.tx.us/departments/fire-rescue/employment (accessed on 1 September 2023).
- National Fire Protection Association. NFPA 1583 Standard on Health-Related Fitness Programs for Fire Department Members; National Fire Protection Association: Quincy, MA, USA, 2022. [Google Scholar]
- Grace, F.; Herbert, P.; Elliott, A.D.; Richards, J.; Beaumont, A.; Sculthorpe, N.F. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men. Exp. Gerontol. 2018, 109, 75–81. [Google Scholar] [CrossRef]
- Gripp, F.; Nava, R.C.; Cassilhas, R.C.; Esteves, E.A.; Magalhães, C.O.D.; Dias-Peixoto, M.F.; de Castro Magalhães, F.; Amorim, F.T. HIIT is superior than MICT on cardiometabolic health during training and detraining. Eur. J. Appl. Physiol. 2021, 121, 159–172. [Google Scholar] [CrossRef]
- Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Gibala, M.J. High-intensity Interval Training: A Time-efficient Strategy for Health Promotion? Curr. Sports Med. Rep. 2007, 6, 211–213. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Interval Train. 2018, 1, 409–412. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Cabre, H.E.; Gould, L.M.; Blue, M.N.M.; Smith-Ryan, A.E. Effects of Essential Amino Acids on High-Intensity Interval Training Performance, Fatigue Outcomes, and Workload Progression. J. Am. Nutr. Assoc. 2023, 42, 411–417. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Cámara-Pérez, J.C.; Soto-Hermoso, V.M.; Latorre-Román, P. A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. J. Strength Cond. Res. 2017, 31, 146–153. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E. Enjoyment of high-intensity interval training in an overweight/obese cohort: A short report. Clin. Physiol. Funct. Imaging 2017, 37, 89–93. [Google Scholar] [CrossRef]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Syed-Abdul, M.M. Benefits of Resistance Training in Older Adults. Curr. Aging Sci. 2021, 14, 5–9. [Google Scholar] [CrossRef]
- Ouerghi, N.; Fradj, M.K.B.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Greenwalt, C.E.; Saylor, H.E.; Gould, L.M.; Harrison, C.H.; Brewer, G.J.; Blue, M.N.M.; Ferrando, A.A.; Huffman, K.M.; Mayer-Davis, E.J.; et al. High-intensity interval training and essential amino acid supplementation: Effects on muscle characteristics and whole-body protein turnover. Physiol. Rep. 2021, 9, e14655. [Google Scholar] [CrossRef]
- Menz, V.; Marterer, N.; Amin, S.B.; Faulhaber, M.; Hansen, A.B.; Lawley, J.S. Functional vs. Running Low-Volume High-Intensity Interval Training: Effects on VO(2)max and Muscular Endurance. J. Sports Sci. Med. 2019, 18, 497–504. [Google Scholar]
- Ballesta-García, I.; Martínez-González-moro, I.; Rubio-Arias, J.; Carrasco-Poyatos, M. High-intensity interval circuit training versus moderate-intensity continuous training on functional ability and body mass index in middle-aged and older women: A randomized controlled trial. Int. J. Environ. Res. Public Health 2019, 16, 4205. [Google Scholar] [CrossRef]
- Blue, M.N.M.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R. The effects of high intensity interval training on muscle size and quality in overweight and obese adults. J. Sci. Med. Sport 2018, 21, 207–212. [Google Scholar] [CrossRef]
- Mota, J.A. Time Course of Neuromuscular Adaptations during High-Intensity Interval Training. Ph.D. Dissertation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2020. [Google Scholar] [CrossRef]
- Haun, C.T.; Vann, C.G.; Osburn, S.C.; Mumford, P.W.; Roberson, P.A.; Romero, M.A.; Fox, C.D.; Johnson, C.A.; Parry, H.A.; Kavazis, A.N.; et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS ONE 2019, 14, e0215267. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Greenwalt, C.E.; Cabre, H.E.; Gould, L.M.; Brewer, G.J.; Blue, M.N.M.; Ferrando, A.A.; Huffman, K.M.; Mayer-Davis, E.J.; Ryan, E.D.; et al. Metabolic effects of high-intensity interval training and essential amino acids. Eur. J. Appl. Physiol. 2021, 121, 3297–3311. [Google Scholar] [CrossRef]
- Boutcher, S.H. High-Intensity Intermittent Exercise and Fat Loss. J. Obes. 2011, 2011, 868305. [Google Scholar] [CrossRef]
- Chin, E.C.; Yu, A.P.; Lai, C.W.; Fong, D.Y.; Chan, D.K.; Wong, S.H.; Sun, F.; Ngai, H.H.; Yung, P.S.H.; Siu, P.M. Low-Frequency HIIT Improves Body Composition and Aerobic Capacity in Overweight Men. Med. Sci. Sports Exerc. 2020, 52, 56–66. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Moritani, T.; DeVries, H.A. Neural Factors Versus Hypertrophy in the Time Course of Muscle Strength Gains. Am. J. Phys. Med.. 1979, 58, 115–130. [Google Scholar]
- Narici, M.V.; Roi, G.S.; Landoni, L.; Minetti, A.E.; Cerretelli, P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 59, 310–319. [Google Scholar] [CrossRef]
- DeFreitas, J.M.; Beck, T.W.; Stock, M.S.; Dillon, M.A.; Kasishke, P.R. An examination of the time course of training-induced skeletal muscle hypertrophy. Eur. J. Appl. Physiol. 2011, 111, 2785–2790. [Google Scholar] [CrossRef]
- Seynnes, O.R.; De Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef]
- Otsuka, Y.; Yamada, Y.; Maeda, A.; Izumo, T.; Rogi, T.; Shibata, H.; Fukuda, M.; Arimitsu, T.; Miyamoto, N.; Hashimoto, T. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: A randomized controlled trial. J. Cachexia Sarcopenia Muscle 2022, 13, 894–908. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.M.; Wagner, A.; Peter Magnusson, S.; Halkjær-Kristensen, J.; Simonsen, E.B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef]
- Stock, M.S.; Thompson, B.J. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris. PLoS ONE 2014, 9, e115567. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Casolo, A.; Negro, F.; Scorcelletti, M.; Bazzucchi, I.; Enoka, R.; Felici, F.; Farina, D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J. Physiol. 2019, 597, 1873–1887. [Google Scholar] [CrossRef]
- Mason, J.; Frazer, A.K.; Pearce, A.J.; Goodwill, A.M.; Howatson, G.; Jaberzadeh, S.; Kidgell, D.J. Determining the early corticospinal-motoneuronal responses to strength training: A systematic review and meta-analysis. Rev. Neurosci. 2019, 30, 463–476. [Google Scholar] [CrossRef]
- Lopez, P.; Taaffe, D.R.; Galvão, D.A.; Newton, R.U.; Nonemacher, E.R.; Wendt, V.M.; Bassanesi, R.N.; Turella, D.J.; Rech, A. Resistance training effectiveness on body composition and body weight outcomes in individuals with overweight and obesity across the lifespan: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13428. [Google Scholar] [CrossRef]
- Wewege, M.A.; Desai, I.; Honey, C.; Coorie, B.; Jones, M.D.; Clifford, B.K.; Leake, H.B.; Hagstrom, A.D. The Effect of Resistance Training in Healthy Adults on Body Fat Percentage, Fat Mass and Visceral Fat: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 287–300. [Google Scholar] [CrossRef]
- Montague, C.T.; O’Rahilly, S. The perils of portliness: Causes and consequences of visceral adiposity. Diabetes 2000, 49, 883–888. [Google Scholar] [CrossRef]
- MacDonald, H.V.; Johnson, B.T.; Huedo-Medina, T.B.; Livingston, J.; Forsyth, K.C.; Kraemer, W.J.; Farinatti, P.T.V.; Pescatello, L.S. Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e003231. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Cifelli, A.M.; Kostas, G.; Kim, I.-Y. Optimizing Protein Intake in Adults: Interpretation and Application of the Recommended Dietary Allowance Compared with the Acceptable Macronutrient Distribution Range. Adv. Nutr. Int. Rev. J. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Layman, D.K. Dietary Guidelines should reflect new understandings about adult protein needs. Nutr. Metab. 2009, 6, 12. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr. 2008, 87, 1558s–1561s. [Google Scholar] [CrossRef]
- Halton, T.L.; Hu, F.B. The effects of high protein diets on thermogenesis, satiety and weight loss: A critical review. J. Am. Coll. Nutr. 2004, 23, 373–385. [Google Scholar] [CrossRef]
- Giordano, M.; Castellino, P. Correlation between amino acid induced changes in energy expenditure and protein metabolism in humans. Nutrition 1997, 13, 309–312. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.W.; Kalman, D.; Smith-Ryan, A.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Hirsch, K.R.; Saylor, H.E.; Gould, L.M.; Blue, M.N.M. Nutritional Considerations and Strategies to Facilitate Injury Recovery and Rehabilitation. J. Athl. Train. 2020, 55, 918–930. [Google Scholar] [CrossRef]
- Phillips, S.M. Considerations for protein supplementation in warfighters. J. Nutr. 2013, 143, 1838s–1842s. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Kervezee, L.; Boudreau, P.; Gonzales-Aste, F.; Vujovic, N.; Scheer, F.A.J.L.; Boivin, D.B. Effects of Shift Work on the Eating Behavior of Police Officers on Patrol. Nutrients 2020, 12, 999. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Zadourian, A.; Lo, H.C.; Gutierrez, N.R.; Shoghi, A.; Rosander, A.; Pazargadi, A.; Ormiston, C.K.; Wang, X.; Sui, J.; et al. Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-h shift workers: The Healthy Heroes randomized control trial. Cell Metab. 2022, 34, 1442–1456.e7. [Google Scholar] [CrossRef]
- Bøggild, H.; Knutsson, A. Shift work, risk factors and cardiovascular disease. Scand. J. Work Environ. Health 1999, 25, 85–99. [Google Scholar] [CrossRef]
- Sun, M.; Feng, W.; Wang, F.; Li, P.; Li, Z.; Li, M.; Tse, G.; Vlaanderen, J.; Vermeulen, R.; Tse, L.A. Meta-analysis on shift work and risks of specific obesity types. Obes. Rev. 2018, 19, 28–40. [Google Scholar] [CrossRef]
- Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015, 73, 661–674. [Google Scholar] [CrossRef]
- Brown, J.E.; Mosley, M.; Aldred, S. Intermittent fasting: A dietary intervention for prevention of diabetes and cardiovascular disease? Br. J. Diabetes Vasc. Dis. 2013, 13, 68–72. [Google Scholar] [CrossRef]
- Anson, R.M.; Guo, Z.; de Cabo, R.; Iyun, T.; Rios, M.; Hagepanos, A.; Ingram, D.K.; Lane, M.A.; Mattson, M.P. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. USA 2003, 100, 6216–6220. [Google Scholar] [CrossRef]
- Queiroz, J.D.N.; Macedo, R.C.O.; Tinsley, G.M.; Reischak-Oliveira, A. Time-restricted eating and circadian rhythms: The biological clock is ticking. Crit. Rev. Food Sci. Nutr. 2021, 61, 2863–2875. [Google Scholar] [CrossRef]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef]
- Gonzalez, A.E.; Waldman, H.S.; Abel, M.G.; McCurdy, K.W.; McAllister, M.J. Impact of Time Restricted Feeding on Fitness Variables in Professional Resistance Trained Firefighters. J. Occup. Environ. Med. 2021, 63, 343–349. [Google Scholar] [CrossRef]
- McAllister, M.J.; Gonzalez, A.E.; Waldman, H.S. Time Restricted Feeding Reduces Inflammation and Cortisol Response to a Firegrounds Test in Professional Firefighters. J. Occup. Environ. Med. 2021, 63, 441–447. [Google Scholar] [CrossRef]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 33. [Google Scholar] [CrossRef]
- Rae, C.D.; Bröer, S. Creatine as a booster for human brain function. How might it work? Neurochem. Int. 2015, 89, 249–259. [Google Scholar] [CrossRef]
- Wohlgemuth, K.J.; Arieta, L.R.; Brewer, G.J.; Hoselton, A.L.; Gould, L.M.; Smith-Ryan, A.E. Sex differences and considerations for female specific nutritional strategies: A narrative review. J. Int. Soc. Sports Nutr. 2021, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; McAllister, M.J.; Waldman, H.S.; Ferrando, A.A.; Joyce, J.; Barringer, N.D.; Dawes, J.J.; Kieffer, A.J.; Harvey, T.; Kerksick, C.M. International society of sports nutrition position stand: Tactical athlete nutrition. J. Int. Soc. Sports Nutr. 2022, 19, 267–315. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [PubMed]
- Børsheim, E.; Tipton, K.D.; Wolf, S.E.; Wolfe, R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E648–E657. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.B.; Tipton, K.D.; Miller, S.L.; Wolf, S.E.; Wolfe, R.R. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J. Appl. Physiol. 2000, 88, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Antonio, J.; Sanders, M.S.; Ehler, L.A.; Uelmen, J.; Raether, J.B.; Stout, J.R. Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition 2000, 16, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Smith, A.P.; Brockman, P.; Flynn, R.; Maben, A.; Thomas, M. Investigation of the effects of coffee on alertness and performance during the day and night. Neuropsychobiology 1993, 27, 217–223. [Google Scholar] [CrossRef]
- Bruce, C.R.; Anderson, M.E.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Enhancement of 2000-m rowing performance after caffeine ingestion. Med. Sci. Sports Exerc. 2000, 32, 1958–1963. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Anselme, F.; Collomp, K.; Mercier, B.; Ahmaïdi, S.; Prefaut, C. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Wassell, S.D.; Edwards, E.S.; Saunders, M.J.; Womack, C.J. Effect of caffeine on the hemostatic response to firefighting drills. J. Caffeine Adenosine Res. 2020, 10, 117–123. [Google Scholar] [CrossRef]
- Volek, J.S.; Duncan, N.D.; Mazzetti, S.A.; Staron, R.S.; Putukian, M.; Gómez, A.L.; Pearson, D.R.; Fink, W.J.; Kraemer, W.J. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med. Sci. Sports Exerc. 1999, 31, 1147–1156. [Google Scholar] [CrossRef]
- Vandenberghe, K.; Goris, M.; Van Hecke, P.; Van Leemputte, M.; Vangerven, L.; Hespel, P. Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 1997, 83, 2055–2063. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E. Creatine and Caffeine: Considerations for Concurrent Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 607–623. [Google Scholar] [CrossRef]
- Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 2007, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Soderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Ainsley Dean, P.J.; Arikan, G.; Opitz, B.; Sterr, A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion 2017, 2, CNC34. [Google Scholar] [CrossRef] [PubMed]
- Poston, W.S.C.; Haddock, C.K.; Jahnke, S.A.; Jitnarin, N.; Tuley, B.C.; Kales, S.N. The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort. J. Occup. Environ. Med. 2011, 53, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Tsismenakis, A.J.; Christophi, C.A.; Burress, J.W.; Kinney, A.M.; Kim, M.; Kales, S.N. The obesity epidemic and future emergency responders. Obesity 2009, 17, 1648–1650. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.W.; Waletzko, S.P.; Reed, V.; Glasner, E.; Noonan, B.C. Retrospective Longitudinal Evaluation of Male Firefighter’s Body Composition and Cardiovascular Health. J. Occup. Environ. Med. 2022, 64, 123–130. [Google Scholar] [CrossRef]
- Kachur, S.; Lavie, C.J.; de Schutter, A.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular diseases. Minerva Med. 2017, 108, 212–228. [Google Scholar] [CrossRef]
- Campbell, R.; Petrillo, J. Fatal Firefighter Injuries in the US in 2022; NFPA Research; National Fire Protection Association: Quincy, MA, USA, 2023. [Google Scholar]
- Mota, J.A.; Barnette, T.J.; Gerstner, G.R.; Giuliani, H.K.; Tweedell, A.J.; Kleinberg, C.R.; Thompson, B.J.; Pietrosimone, B.; Ryan, E.D. Relationships Between Neuromuscular Function and Functional Balance Performance in Firefighters. Sci. Rep. 2018, 8, 15328. [Google Scholar] [CrossRef]
- Cornell, D.J.; Gnacinski, S.L.; Zamzow, A.; Mims, J.; Ebersole, K.T. Influence of body mass index on movement efficiency among firefighter recruits. Work 2016, 54, 679–687. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Trexler, E.T.; Wingfield, H.L.; Blue, M.N.M. Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J. Sports Sci. 2016, 34, 2038–2046. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Tweedell, A.J.; Kleinberg, C.R.; Gerstner, G.R.; Barnette, T.J.; Mota, J.A.; Smith-Ryan, A.E.; Ryan, E.D. The Influence of Habitual Protein Intake on Body Composition and Muscular Strength in Career Firefighters. J. Am. Coll. Nutr. 2018, 37, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Alexander, D.D.; Perez, V. Effects of Whey Protein and Resistance Exercise on Body Composition: A Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Nutr. 2014, 33, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.N.; Soteriades, E.S.; Christoudias, S.G.; Christiani, D.C. Firefighters and on-duty deaths from coronary heart disease: A case control study. Environ. Health 2003, 2, 14. [Google Scholar] [CrossRef]
- Firefighter Life Safety Research Center. Firefighter Fatalities and Injuries: The Role of Heat Stress and PPE; University of Illinois, Fire Service Institute: Champaign, IL, USA, 2008; pp. 1–74. [Google Scholar]
- Smith, D.L.; DeBlois, J.P.; Kales, S.N.; Horn, G.P. Cardiovascular strain of firefighting and the risk of sudden cardiac events. Exerc. Sport Sci. Rev. 2016, 44, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Soteriades, E.S.; Smith, D.L.; Tsismenakis, A.J.; Baur, D.M.; Kales, S.N. Cardiovascular disease in US firefighters: A systematic review. Cardiol. Rev. 2011, 19, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Fahy, R.F.; Petrillo, J.T. Firefighter Fatalities in the US in 2020; NFPA Research; National Fire Protection Association: Quincy, MA, USA, 2021; 22p. [Google Scholar]
- Wohlgemuth, K.J.; Sekiguchi, Y.; Mota, J.A. Overexertion and heat stress in the fire service: A new conceptual framework. Am. J. Ind. Med. 2023, 66, 705–709. [Google Scholar] [CrossRef] [PubMed]
- National Fire Protection Association. NFPA 1582: Standard on Comprehensive Occupational Medical Program for Fire Departments; NFPA: Quincy, MA, USA, 2022. [Google Scholar]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Siebert, U.; Schobersberger, W. Resistance Training in the Treatment of the Metabolic Syndrome. Sports Med. 2010, 40, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Wittke, A.; Bebenek, M.; Fröhlich, M.; von Stengel, S. High Intensity Resistance Training Methods with and without Protein Supplementation to Fight Cardiometabolic Risk in Middle-Aged Males: A Randomized Controlled Trial. BioMed Res. Int. 2016, 2016, 9705287. [Google Scholar] [CrossRef]
- Carr-Pries, N.J.; Killip, S.C.; MacDermid, J.C. Scoping review of the occurrence and characteristics of firefighter exercise and training injuries. Int. Arch. Occup. Environ. Health 2022, 95, 909–925. [Google Scholar] [CrossRef]
- Frost, D.M.; Beach, T.A.C.; Crosby, I.; McGill, S.M. Firefighter injuries are not just a fireground problem. Work 2015, 52, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.A.; Poston, W.S.C.; Haddock, C.K.; Jitnarin, N. Obesity and incident injury among career firefighters in the central United States. Obesity 2013, 21, 1505–1508. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.W.; Suyama, J.; Hostler, D. A review of risk factors of accidental slips, trips, and falls among firefighters. Saf. Sci. 2013, 60, 203–209. [Google Scholar] [CrossRef]
- Punakallio, A.; Hirvonen, M.; Grönqvist, R. Slip and fall risk among firefighters in relation to balance, muscular capacities and age. Saf. Sci. 2005, 43, 455–468. [Google Scholar] [CrossRef]
- Palmer, T.B.; Farrow, A.C.; Palmer, B.M. Relationships between hamstring morphological characteristics and postural balance in elderly men. J. Musculoskelet. Neuronal Interact. 2020, 20, 88–93. [Google Scholar] [PubMed]
- Marciniak, R.A.; Ebersole, K.T.; Cornell, D.J. Relationships between balance and physical fitness variables in firefighter recruits. Work 2021, 68, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Cornell, D.J.; Gnacinski, S.L.; Ebersole, K.T. Functional movement quality of firefighter recruits: Longitudinal changes from the academy to active-duty status. Int. J. Environ. Res. Public Health 2021, 18, 3656. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Sahinis, C.; Baltzopoulos, V. Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review. J. Sport Health Sci. 2022, 12, 343–358. [Google Scholar] [CrossRef]
- Thompson, B.J.; Smith, D.B.; Sobolewski, E.J.; Fiddler, R.E.; Everett, L.; Klufa, J.L.; Ryan, E.D. Influence of acute eccentric exercise on the H:Q ratio. Int. J. Sports Med. 2011, 32, 935–939. [Google Scholar] [CrossRef]
- Mayer, J.M.; Quillen, W.S.; Verna, J.L.; Chen, R.; Lunseth, P.; Dagenais, S. Impact of a Supervised Worksite Exercise Program on Back and Core Muscular Endurance in Firefighters. Am. J. Health Promot. 2015, 29, 165–172. [Google Scholar] [CrossRef]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core stability and its relationship to lower extremity function and injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Peate, W.F.; Bates, G.; Lunda, K.; Francis, S.; Bellamy, K. Core strength: A new model for injury prediction and prevention. J. Occup. Med. Toxicol. 2007, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Kleinberg, C.R.; Ryan, E.; Tweedell, A.J.; Barnette, T.J.; Wagoner, C.W. Influence of Lower Extremity Muscle Size and Quality on Stair-Climb Performance in Career Fighfighters R. J. Strength Cond. Res. 2016, 30, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.D.; Laffan, M.R.; Trivisonno, A.J.; Gerstner, G.R.; Mota, J.A.; Giuliani, H.K.; Pietrosimone, B.G. Neuromuscular determinants of simulated occupational performance in career firefighters. Appl. Ergon. 2022, 98, 103555. [Google Scholar] [CrossRef] [PubMed]
- Sheaff, A.K.; Bennett, A.; Hanson, E.D.; Kim, Y.S.; Hsu, J.; Shim, J.K.; Edwards, S.T.; Hurley, B.F. Physiological determinants of the Candidate Physical Ability Test in firefighters. J. Strength Cond. Res. 2010, 24, 3112–3122. [Google Scholar] [CrossRef] [PubMed]
- Williams-Bell, F.M.; Villar, R.; Sharratt, M.T.; Hughson, R.L. Physiological demands of the firefighter candidate physical ability test. Med. Sci. Sports Exerc. 2009, 41, 653–662. [Google Scholar] [CrossRef]
- Kravitz, L.; American College of Sports Medicine. High-Intensity Interval Training. 2014. Available online: https://www.acsm.org/docs/default-source/files-for-resource-library/high-intensity-interval-training.pdf?sfvrsn=b0f72be6_2 (accessed on 1 September 2023).
- Schoenfeld, B.J.; Grgic, J.; Van Every, D.W.; Plotkin, D.L. Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef]
Supplement | Dose | Benefits | Magnitude of Effect |
---|---|---|---|
Whey Protein | 20–30 g bolus * | Recovery | +++ |
Muscle Protein Synthesis | |||
Essential Amino Acids | ~10 g in whole foods or protein supplements * | Recovery | + |
Muscle Protein Synthesis | |||
Caffeine | 3–6 milligrams per kilogram of body weight * | Alertness | ++ |
Improved Aerobic and Anaerobic Performance | |||
Creatine Monohydrate | Loading: 5 g, 4 times a day, 5–7 days = 20 g * | Neuroprotective | +++ |
Cognitive Function | |||
Maintenance: 3–5 g daily * | Anaerobic Performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wohlgemuth, K.J.; Conner, M.J.; Tinsley, G.M.; Palmer, T.B.; Mota, J.A. Strategies for Improving Firefighter Health On-Shift: A Review. J. Funct. Morphol. Kinesiol. 2024, 9, 105. https://doi.org/10.3390/jfmk9020105
Wohlgemuth KJ, Conner MJ, Tinsley GM, Palmer TB, Mota JA. Strategies for Improving Firefighter Health On-Shift: A Review. Journal of Functional Morphology and Kinesiology. 2024; 9(2):105. https://doi.org/10.3390/jfmk9020105
Chicago/Turabian StyleWohlgemuth, Kealey J., Michael J. Conner, Grant M. Tinsley, Ty B. Palmer, and Jacob A. Mota. 2024. "Strategies for Improving Firefighter Health On-Shift: A Review" Journal of Functional Morphology and Kinesiology 9, no. 2: 105. https://doi.org/10.3390/jfmk9020105
APA StyleWohlgemuth, K. J., Conner, M. J., Tinsley, G. M., Palmer, T. B., & Mota, J. A. (2024). Strategies for Improving Firefighter Health On-Shift: A Review. Journal of Functional Morphology and Kinesiology, 9(2), 105. https://doi.org/10.3390/jfmk9020105