Sleep Quality in Greek Adolescent Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations, Strength, and Context
4.2. Practical Recommendations
- ○
- If you have trouble sleeping the night before, inform your coach so they can adjust your training load.
- ○
- If you are a long-distance swimmer, check your sleep quality often.
- ○
- For better sleep, keep hydrated.
- ○
- Improve respiratory muscle strength for better sleep.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortes, L.S.; Nakamura, F.Y.; Lima-Junior, D.; Ferreira, M.E.C.; Fonseca, F.S. Does Social Media Use on Smartphones Influence Endurance, Power, and Swimming Performance in High-Level Swimmers? Res. Q. Exerc. Sport 2022, 93, 120–129. [Google Scholar] [CrossRef]
- Calleja-Gonzalez, J.; Marques-Jimenez, D.; Jones, M.; Huyghe, T.; Navarro, F.; Delextrat, A.; Jukic, I.; Ostojic, S.M.; Sampaio, J.E.; Schelling, X.; et al. What Are We Doing Wrong When Athletes Report Higher Levels of Fatigue From Travel-ing Than From Training or Competition? Front. Psychol. 2020, 11, 194. [Google Scholar]
- Surda, P.; Putala, M.; Siarnik, P.; Walker, A.; De Rome, K.; Amin, N.; Sangha, M.S.; Fokkens, W. Sleep in elite swimmers: Prevalence of sleepiness, obstructive sleep apnoea and poor sleep quality. BMJ Open Sport Exerc. Med. 2019, 5, e000673. [Google Scholar] [CrossRef]
- Slimani, M.; Znazen, H.; Miarka, B.; Bragazzi, N.L. Maximum Oxygen Uptake of Male Soccer Players According to their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. J. Hum. Kinet. 2019, 66, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.; Adolescent Sleep Working Group; Committee on Adolescence. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef]
- Sargent, C.; Halson, S.; Roach, G.D. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S310–S315. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.; Bevilacqua, G.G.; Coimbra, D.R.; Pereira, F.S.; Brandt, R. Sleep Quality, Mood and Performance: A Study of Elite Brazilian Volleyball Athletes. J. Sports Sci. Med. 2016, 15, 601–605. [Google Scholar] [PubMed]
- Chen, Y.; Cui, Y.; Chen, S.; Wu, Z. Relationship between sleep and muscle strength among Chinese university students: A cross-sectional study. J. Musculoskelet. Neuronal Interact. 2017, 17, 327–333. [Google Scholar]
- Kim, S.E.; Hong, J.; Cha, J.Y.; Park, J.M.; Eun, D.; Yoo, J.; Jee, Y.S. Relative appendicular skeletal muscle mass is associated with isokinetic muscle strength and balance in healthy collegiate men. J. Sports Sci. 2016, 34, 2114–2120. [Google Scholar] [CrossRef]
- Nedelec, M.; Aloulou, A.; Duforez, F.; Meyer, T.; Dupont, G. The variability of sleep among elite athletes. Sports Med. Open 2018, 4, 34. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Drosou, E.; Gourgoulis, V.; Thomaidis, S.; Douda, H.; Tokmakidis, S.P. Competitive performance, training load and physiological responses during tapering in young swimmers. J. Hum. Kinet. 2013, 38, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Pla, R.; Le Meur, Y.; Aubry, A.; Toussaint, J.F.; Hellard, P. Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bretonneau, Q.; Morales-Artacho, A.; Pla, R.; Bosquet, L. Effect of the pre-taper level of fatigue on the taper-induced changes in performance in elite swimmers. Front. Sports Act. Living 2024, 6, 1353817. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.T.; Karetsi, E.; Gourgoulianis, K.I. The Effect of Growth and Body Surface Area on Cardiopulmonary Exercise Testing: A Cohort Study in Preadolescent Female Swimmers. Children 2023, 10, 1608. [Google Scholar] [CrossRef] [PubMed]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [PubMed]
- Stavrou, V.; Vavougios, G.; Karetsi, E.; Adam, G.; Daniil, Z.; Gourgoulianis, K.I. Evaluation of respiratory parameters in finswimmers regarding gender, swimming style and distance. Respir. Physiol. Neurobiol. 2018, 254, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.H.; Cooke, N.T.; Edwards, R.H.; Spiro, S.G. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 1984, 39, 535–538. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Stavrou, V.; Vavougios, G.D.; Bardaka, F.; Karetsi, E.; Daniil, Z.; Gourgoulianis, K.I. The effect of exercise training on the quality of sleep in national-level adolescent finswimmers. Sports Med. Open 2019, 5, 34. [Google Scholar] [CrossRef]
- Weger, M.; Diotel, N.; Dorsemans, A.C.; Dickmeis, T.; Weger, B.D. Stem cells and the circadian clock. Dev. Biol. 2017, 431, 111–123. [Google Scholar] [CrossRef]
- Stavrou, V.; Toubekis, A.G.; Karetsi, E. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding. J. Hum. Kinet. 2015, 49, 89–98. [Google Scholar] [CrossRef]
- Woorons, X.; Mollard, P.; Pichon, A.; Duvallet, A.; Richalet, J.P.; Lamberto, C. Prolonged expiration down to residual volume leads to severe arterial hypoxemia in athletes during submaximal exercise. Respir. Physiol. Neurobiol. 2007, 158, 75–82. [Google Scholar] [CrossRef]
- Williams, T.B.; Badariotti, J.I.; Corbett, J.; Miller-Dicks, M.; Neupert, E.; McMorris, T.; Ando, S.; Parker, M.O.; Thelwell, R.C.; Causer, A.J.; et al. The effects of sleep deprivation, acute hypoxia, and exercise on cognitive performance: A multi-experiment combined stressors study. Physiol. Behav. 2024, 274, 114409. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Neufeld, E.V.; Boland, D.M.; Martin, J.L.; Cooper, C.B. Interrelationship between Sleep and Exercise: A Systematic Review. Adv. Prev. Med. 2017, 2017, 1364387. [Google Scholar]
- Carskadon, M.A. Sleep in adolescents: The perfect storm. Pediatr. Clin. N. Am. 2011, 58, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, and Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef]
- Swinbourne, R.; Gill, N.; Vaile, J.; Smart, D. Prevalence of poor sleep quality, sleepiness and obstructive sleep apnoea risk factors in athletes. Eur. J. Sport Sci. 2016, 16, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Lastella, M.; Vincent, G.E.; Duffield, R.; Roach, G.D.; Halson, S.L.; Heales, L.J.; Sargent, C. Can sleep be used as an indicator of overreaching and overtraining in athletes? Front. Physiol. 2018, 9, 436. [Google Scholar] [CrossRef]
- Malina, R.; Rogol, A.; Cumming, S.; Coelho e Silva, M.; Figueiredo, A. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed]
Total | Range of Values | |||
---|---|---|---|---|
Variable | Unit | (n = 48) | Lower | Upper |
Age | years | 15.2 ± 0.9 | 14.0 | 17.0 |
Body mass index | kg/m2 | 20.6 ± 1.8 | 17.3 | 24.6 |
Body surface area | m2 | 1.4 ± 0.2 | 1.1 | 1.9 |
Lean body mass | % | 66.0 ± 4.6 | 58.6 | 74.6 |
Total body water | % | 58.4 ± 7.4 | 49.2 | 71.0 |
Δchest | cm | 7.8 ± 2.7 | 3.0 | 13.0 |
Handgrip | kg−1 | 35.5 ± 8.1 | 22.2 | 55.7 |
SpO2 resting | % | 98.7 ± 0.5 | 98.0 | 99.0 |
Heart rate resting | % of predicted | 39.7 ± 5.8 | 33.0 | 50.0 |
MIP | % of predicted | 109.1 ± 11.1 | 97.0 | 133.0 |
MEP | % of predicted | 105.5 ± 9.6 | 98.0 | 142.0 |
FEV1 | % of predicted | 111.5 ± 9.9 | 100.0 | 136.0 |
FVC | % of predicted | 113.0 ± 10.5 | 94.0 | 162.0 |
PEF | % of predicted | 142.3 ± 27.5 | 99.0 | 156.0 |
PSQI | score | 3.0 ± 1.7 | 0.0 | 7.0 |
Swimming style/distance | BK: 50 m (B, n = 4, G, n = 4), 100 m (B, n = 2), 200 m (B, n = 2); BR: 50 m (B, n = 2, G, n = 2), 100 m (G, n = 2), 200 m (B, n = 2, G, n = 2); BF: 100 m (G, n = 2), 200 m (B, n = 2, G, n = 2); FR: 50 m (G, n = 2), 100 m (B, n = 2, G, n = 2), 200 m (B, n = 2), 400 m (G, n = 2), 1500 m (B, n = 2, G, n = 2); IM: 400 m (B, n = 4, G, n = 2) | |||
Type of exercise/percent of each training | Aerobic = 15%; Anaerobic = 20%; Strength = 15%; Hypoxic = 35%; Technique and Skills = 15% |
Variable | Athletes | Gender | p Value | Swimming Distance | p Value | |||
---|---|---|---|---|---|---|---|---|
Unit | Total | Boys (n = 22) | Girls (n = 26) | ≤200 m (n = 24) | >200 m (n = 24) | |||
Age | years | 15.2 ± 0.9 | 15.7 ± 1.0 | 15.1 ± 0.8 | 0.661 | 15.3 ± 1.1 | 15.2 ± 0.7 | 0.758 |
Body mass index | kg/m2 | 20.6 ± 1.8 | 20.2 ± 1.7 | 20.9 ± 1.9 | 0.152 | 21.0 ± 1.9 | 20.2 ± 1.7 | 0.162 |
Body surface area | m2 | 1.4 ± 0.2 | 1.5 ± 0.2 | 1.4 ± 0.2 | 0.003 | 1.4 ± 0.2 | 1.4 ± 0.2 | 0.584 |
Lean body mass | % | 50.5 ± 3.3 | 68.6 ± 3.6 | 63.8 ± 4.2 | <0.001 | 65.3 ± 4.3 | 66.6 ± 4.7 | 0.319 |
Total body water | % | 58.3 ± 7.4 | 64.6 ± 4.9 | 53.0 ± 4.2 | <0.001 | 58.7 ± 7.9 | 57.9 ± 6.9 | 0.741 |
Δchest | cm | 7.8 ± 2.4 | 8.6 ± 2.7 | 7.0 ± 2.6 | 0.037 | 6.9 ± 2.4 | 8.5 ± 2.7 | 0.033 |
Handgrip | kg | 35.5 ± 8.1 | 41.3 ± 7.1 | 30.6 ± 5.1 | <0.001 | 36.0 ± 8.7 | 35.0 ± 7.6 | 0.678 |
MIP | % of predicted | 109.1 ± 11.0 | 103.7 ± 11.9 | 98.6 ± 11.8 | <0.001 | 97.3 ± 10.8 | 98.0 ± 9.8 | 0.803 |
MEP | % of predicted | 105.3 ± 9.6 | 98.6 ± 11.8 | 92.9 ± 4.5 | 0.027 | 94.3 ± 5.3 | 96.8 ± 11.6 | 0.359 |
FEV1 | % of predicted | 111.6 ± 9.8 | 108.8 ± 12.7 | 102.7 ± 4.5 | 0.026 | 104.1 ± 4.5 | 106.9 ± 12.8 | 0.313 |
FVC | % of predicted | 113.1 ± 20.5 | 115.5 ± 10.9 | 108.2 ± 10.7 | 0.008 | 112.0 ± 11.9 | 111.0 ± 7.5 | 0.751 |
PEF | % of predicted | 142.4 ± 27.5 | 146.0 ± 27.3 | 139.2 ± 27.7 | 0.400 | 143.1 ± 24.0 | 141.6 ± 30.8 | 0.852 |
PSQI | score | 2.9 ± 1.7 | 2.8 ± 1.8 | 3.1 ± 1.7 | 0.613 | 4.0 ± 1.8 | 1.9 ± 0.8 | <0.001 |
cannot get to sleep within 30 min | score | 0.9 ± 0.6 | 1.0 ± 0.6 | 0.8 ± 0.5 | 0.363 | 0.9 ± 0.6 | 0.9 ± 0.5 | 0.983 |
wake up in the middle of the night or early morning | score | 0.7 ± 0.7 | 0.8 ± 0.6 | 0.7 ± 0.7 | 0.798 | 0.8 ± 0.7 | 0.7 ± 0.6 | 0.662 |
have to get up to use the bathroom | score | 0.5 ± 0.8 | 0.7 ± 0.9 | 0.3 ± 0.4 | 0.060 | 0.6 ± 0.6 | 0.4 ± 0.8 | 0.460 |
cannot breathe comfortably | score | 0.1 ± 0.3 | 0.1 ± 0.3 | 0.1 ± 0.3 | 0.865 | 02 ± 0.4 | 0.0 ± / | 0.037 |
cough or snore loudly | score | 0.1 ± 0.4 | 0.3 ± 0.6 | 0.0 ± / | 0.032 | 02 ± 0.6 | 0.8 ± 0.3 | 0.521 |
feel too cold | score | 0.1 ± 0.2 | 0.1 ± 0.3 | 0.0 ± / | 0.121 | 0.0 ± / | 0.1 ± 0.3 | 0.155 |
feel too hot | score | 0.6 ± 0.9 | 0.7 ± 1.0 | 0.6 ± 0.7 | 0.675 | 1.1 ± 0.9 | 0.3 ± 0.6 | 0.001 |
have bad dreams | score | 0.3 ± 0.6 | 0.4 ± 0.7 | 0.3 ± 0.6 | 0.763 | 0.4 ± 0.6 | 0.3 ± 0.6 | 0.365 |
have pain | score | 0.2 ± 0.5 | 0.2 ± 0.4 | 0.2 ± 0.6 | 0.733 | 0.4 ± 0.7 | 0.0 ± / | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrou, V.T.; Vavougios, G.D.; Tsirimona, G.; Daniil, Z.; Gourgoulianis, K.I. Sleep Quality in Greek Adolescent Swimmers. J. Funct. Morphol. Kinesiol. 2024, 9, 87. https://doi.org/10.3390/jfmk9020087
Stavrou VT, Vavougios GD, Tsirimona G, Daniil Z, Gourgoulianis KI. Sleep Quality in Greek Adolescent Swimmers. Journal of Functional Morphology and Kinesiology. 2024; 9(2):87. https://doi.org/10.3390/jfmk9020087
Chicago/Turabian StyleStavrou, Vasileios T., George D. Vavougios, Glykeria Tsirimona, Zoe Daniil, and Konstantinos I. Gourgoulianis. 2024. "Sleep Quality in Greek Adolescent Swimmers" Journal of Functional Morphology and Kinesiology 9, no. 2: 87. https://doi.org/10.3390/jfmk9020087
APA StyleStavrou, V. T., Vavougios, G. D., Tsirimona, G., Daniil, Z., & Gourgoulianis, K. I. (2024). Sleep Quality in Greek Adolescent Swimmers. Journal of Functional Morphology and Kinesiology, 9(2), 87. https://doi.org/10.3390/jfmk9020087