Changes in Cardiopulmonary Capacity Parameters after Surgery: A Pilot Study Exploring the Link between Heart Function and Knee Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation by Transthoracic Echocardiogram with Myocardial Work Assessment
2.2. Spirometry and Cardiopulmonary Exercise Testing
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Thompson, P.D.; Ackerman, M.J.; Balady, G.; Berger, S.; Cohen, D.; Dimeff, R.; Douglas, P.S.; Glover, D.W.; Hutter, A.M., Jr.; et al. Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: Endorsed by the American College of Cardiology Foundation. Circulation 2007, 115, 1643–1655. [Google Scholar] [CrossRef] [PubMed]
- McKinney, J.; Velghe, J.; Fee, J.; Isserow, S.; Drezner, J.A. Defining Athletes and Exercisers. Am. J. Cardiol. 2019, 123, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Gokeler, A.; Grassi, A.; Hoogeslag, R.; van Houten, A.; Lehman, T.; Bolling, C.; Buckthorpe, M.; Norte, G.; Benjaminse, A.; Heuvelmans, P.; et al. Return to sports after ACL injury 5 years from now: 10 things we must do. J. Exp. Orthop. 2022, 9, 73. [Google Scholar] [CrossRef]
- Steding-Ehrenborg, K.; Hedén, B.; Herbertsson, P.; Arheden, H. A longitudinal study on cardiac effects of deconditioning and physical reconditioning using the anterior cruciate ligament injury as a model. Clin. Physiol. Funct. Imaging 2013, 33, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Giada, F.; Bertaglia, E.; De Piccoli, B.; Franceschi, M.; Sartori, F.; Raviele, A.; Pascotto, P. Cardiovascular adaptations to endurance training and detraining in young and older athletes. Int. J. Cardiol. 1998, 65, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, B.; Vasta, S.; Torre, G.; Gupta, A.; Hettrich, C.M.; Bollier, M.J.; Wolf, B.R.; Amendola, A. Return to Sport After Anterior Cruciate Ligament Reconstruction in a Cohort of Division I NCAA Athletes from a Single Institution. Orthop. J. Sports Med. 2021, 9, 2325967120982281. [Google Scholar] [CrossRef]
- Papalia, R.; Franceschi, F.; Zampogna, B.; Tecame, A.; Maffulli, N.; Denaro, V. Surgical management of partial tears of the anterior cruciate ligament. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 154–165. [Google Scholar] [CrossRef]
- Segreti, A.; Fossati, C.; Mulè, M.T.; Fanale, V.; Crispino, S.P.; Coletti, F.; Parisi, F.R.; Zampogna, B.; Vasta, S.; Mannacio, E.; et al. Assessment of cardiopulmonary capacity in deconditioned athletes because of knee injury. J. Sports Med. Phys. Fitness 2024, 64, 615–623. [Google Scholar] [CrossRef]
- Dal Monte, A. Fisiologia e Medicina dello Sport; Sansoni Editore: Firenze, Italy, 1977. [Google Scholar]
- Mavrov, M. The law institute of patient’s informed consent. Publ. House Stovi Group. Bulg. 2018, 19–24. [Google Scholar]
- Abawi, D.; Rinaldi, T.; Faragli, A.; Pieske, B.; Morris, D.A.; Kelle, S.; Tschöpe, C.; Zito, C.; Alogna, A. The non-invasive assessment of myocardial work by pressure-strain analysis: Clinical applications. Heart Fail. Rev. 2022, 27, 1261–1279. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, F.; D’Andrea, A.; D’Ascenzi, F.; Bandera, F.; Benfari, G.; Esposito, R.; Malagoli, A.; Mandoli, G.E.; Santoro, C.; Russo, V.; et al. Myocardial Work by Echocardiography: Principles and Applications in Clinical Practice. J. Clin. Med. 2021, 10, 4521. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Segreti, A.; Picarelli, F.; Gioia, G.D.I.; Coletti, F.; Crispino, S.P.; Fanale, V.; Fossati, C.; Antonelli Incalzi, R.; Pigozzi, F.; Grigioni, F. Athlete’s heart or heart disease in the athlete? Evaluation by cardiopulmonary exercise testing. J. Sports Med. Phys. Fit. 2023, 63, 873–890. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Pritchard, A.; Burns, P.; Correia, J.; Jamieson, P.; Moxon, P.; Purvis, J.; Thomas, M.; Tighe, H.; Sylvester, K.P. ARTP statement on cardiopulmonary exercise testing 2021. BMJ Open Respir. Res. 2021, 8, e001121. [Google Scholar] [CrossRef]
- Agostoni, P.; Bianchi, M.; Moraschi, A.; Palermo, P.; Cattadori, G.; La Gioia, R.; Bussotti, M.; Wasserman, K. Work-rate affects cardiopulmonary exercise test results in heart failure. Eur. J. Heart Fail. 2005, 7, 498–504. [Google Scholar] [CrossRef]
- Sietsema, K.E.; Stringer, W.W.; Sue, D.Y.; Ward, S. Wasserman & Whipp’s: Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Agostoni, P.; Dumitrescu, D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. Int. J. Cardiol. 2019, 288, 107–113. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Simonton, C.A.; Higginbotham, M.B.; Cobb, F.R. The ventilatory threshold: Quantitative analysis of reproducibility and relation to arterial lactate concentration in normal subjects and in patients with chronic congestive heart failure. Am. J. Cardiol. 1988, 62, 100–107. [Google Scholar] [CrossRef]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R., Jr.; Paletta, G.A., Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Segreti, A.; Verolino, G.; Crispino, S.P.; Agostoni, P. Listing Criteria for Heart Transplant: Role of Cardiopulmonary Exercise Test and of Prognostic Scores. Heart Fail. Clin. 2021, 17, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Adami, P.E. Protocols of exercise testing in athletes and cardiopulmonary testing: Assessment of fitness. In The ESC Textbook of Sports Cardiology; Pelliccia, A., Heidbuchel, H., Corrado, D., Börjesson, M., Sharma, S., Pelliccia, A., Heidbuchel, H., Corrado, D., Borjesson, M., Sharma, S., Eds.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Petek, B.J.; Gustus, S.K.; Wasfy, M.M. Cardiopulmonary Exercise Testing in Athletes: Expect the Unexpected. Curr. Treat. Options Cardiovasc. Med. 2021, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, R.; Schmied, C.; Niederseer, D.; Guazzi, M. Cardiopulmonary Exercise Test Parameters in Athletic Population: A Review. J. Clin. Med. 2021, 10, 5073. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidi, H.; Birmpa, D.; Benas, D.; Trivilou, P.; Fambri, A.; Iliodromitis, E.K. Cardiopulmonary Exercise Testing: The ABC for the Clinical Cardiologist. Cardiology 2022, 147, 62–71. [Google Scholar] [CrossRef]
- Caselli, S.; D’Ascenzi, F. Echocardiogram: Morphological and functional evaluation including new echocardiographic techniques. In The ESC Textbook of Sports Cardiology; Pelliccia, A., Heidbuchel, H., Corrado, D., Börjesson, M., Sharma, S., Pelliccia, A., Heidbuchel, H., Corrado, D., Borjesson, M., Sharma, S., Eds.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Cameli, M.; Mandoli, G.E.; Sciaccaluga, C.; Mondillo, S. More than 10 years of speckle tracking echocardiography: Still a novel technique or a definite tool for clinical practice? Echocardiography 2019, 36, 958–970. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.B.; Marwick, T.H. Normal ranges of left ventricular strain: A meta-analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Voigt, J.U.; Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef]
- D’Andrea, A.; Radmilovic, J.; Carbone, A.; Mandoli, G.E.; Santoro, C.; Evola, V.; Bandera, F.; D’Ascenzi, F.; Bossone, E.; Galderisi, M.; et al. Speckle tracking evaluation in endurance athletes: The “optimal” myocardial work. Int. J. Cardiovasc. Imaging 2020, 36, 1679–1688. [Google Scholar] [CrossRef]
- Moya, A.; Buytaert, D.; Penicka, M.; Bartunek, J.; Vanderheyden, M. State-of-the-Art: Noninvasive Assessment of Left Ventricular Function Through Myocardial Work. J. Am. Soc. Echocardiogr. 2023, 36, 1027–1042. [Google Scholar] [CrossRef]
- Tokodi, M.; Oláh, A.; Fábián, A.; Lakatos, B.K.; Hizoh, I.; Ruppert, M.; Sayour, A.A.; Barta, B.A.; Kiss, O.; Sydó, N.; et al. Novel insights into the athlete’s heart: Is myocardial work the new champion of systolic function? Eur. Heart J. Cardiovasc. Imaging 2022, 23, 188–197. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.; Carbone, A.; Radmilovic, J.; Russo, V.; Fabiani, D.; Maio, M.D.; Ilardi, F.; Giallauria, F.; Caputo, A.; Cirillo, T.; et al. Myocardial Work Efficiency in Physiologic Left Ventricular Hypertrophy of Power Athletes. J. Cardiovasc. Echogr. 2022, 32, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Older, P.O.; Levett, D.Z.H. Cardiopulmonary Exercise Testing and Surgery. Ann. Am. Thorac. Soc. 2017, 14, S74–S83. [Google Scholar] [CrossRef] [PubMed]
- Otto, J.M.; Levett, D.Z.H.; Grocott, M.P.W. Cardiopulmonary Exercise Testing for Preoperative Evaluation: What Does the Future Hold? Curr. Anesthesiol. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Evers, B.J.; Van Den Bosch, M.H.J.; Blom, A.B.; van der Kraan, P.M.; Koëter, S.; Thurlings, R.M. Post-traumatic knee osteoarthritis; the role of inflammation and hemarthrosis on disease progression. Front. Med. 2022, 9, 973870. [Google Scholar] [CrossRef]
- Barker, T.; Rogers, V.E.; Henriksen, V.T.; Aguirre, D.; Trawick, R.H.; Rasmussen, G.L.; Momberger, N.G. Serum cytokines are increased and circulating micronutrients are not altered in subjects with early compared to advanced knee osteoarthritis. Cytokine 2014, 68, 133–136. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Minhas, A.S.; Gilotra, N.A.; Goerlich, E.; Metkus, T.; Garibaldi, B.T.; Sharma, G.; Bavaro, N.; Phillip, S.; Michos, E.D.; Hays, A.G. Myocardial Work Efficiency, A Novel Measure of Myocardial Dysfunction, Is Reduced in COVID-19 Patients and Associated With In-Hospital Mortality. Front. Cardiovasc. Med. 2021, 8, 667721. [Google Scholar] [CrossRef]
- Danet, R.; Rimbas, R.; Bratu, V.; Magda, S.; Mihalcea, D.; Mihaila, S.; Lungeanu, L.; Velcea, A.; Gheorghiu, L.; Dragoi, R.; et al. Systemic inflammation in the acute myocardial infarction can predict early negative left ventricular remodeling assessed by myocardial work analysis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, jeab289-417. [Google Scholar] [CrossRef]
- Sakellaropoulos, S. Cardiopulmonary Exercise Testing in Sports Cardiology Exercise is Medicine/Sports Medicine. SSEM-Journal 2021. [Google Scholar] [CrossRef]
- Olivier, N.; Legrand, R.; Rogez, J.; Berthoin, S.; Weissland, T. Effects of knee surgery on cardiac function in soccer players. Am. J. Phys. Med. Rehabil. 2007, 86, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.M.; Santos Silva, P.R.; Pedrinelli, A.; Hernandez, A.J. Aerobic fitness in professional soccer players after anterior cruciate ligament reconstruction. PLoS ONE 2018, 13, e0194432. [Google Scholar] [CrossRef] [PubMed]
- Olsen, F.J.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Sengeløv, M.; Jensen, G.B.; Schnohr, P.; Marott, J.L.; Søgaard, P.; Gislason, G.; et al. Normal Values for Myocardial Work Indices Derived from Pressure-Strain Loop Analyses: From the CCHS. Circ. Cardiovasc. Imaging 2022, 15, e013712. [Google Scholar] [CrossRef]
Characteristic | Total, n = 22 |
---|---|
Age, years, mean ± SD | 37.9 ± 12.9 |
Male sex, n (%) | 19 (86.4) |
Height, mean ± SD | 173.3 ± 7.0 |
Weight, mean ± SD | 73.6 ± 12.2 |
Body Mass Index, mean ± SD | 24.4 ± 3.4 |
Echo Parameters | Pre-Surgery n = 22 | Post-Surgery n = 22 | p-Value |
---|---|---|---|
GLS (%) | 18.9 ± 1.8 | 19.3 ± 1.7 | 0.161 |
GWI (mmHg%) | 1685.9 ± 153.8 | 1702.1 ± 163.1 | 0.698 |
GWE (%) | 92.4 ± 3.1 | 95.1 ± 2.1 | 0.006 |
GCW (mmHg%) | 2127.7 ± 194.7 | 2069.5 ± 209.9 | 1.000 |
GWW (mmHg%) | 141.4 ± 74.1 | 98.0 ± 50.9 | 0.007 |
CPET Parameters | Pre-Surgery n = 22 | Post-Surgery n = 22 | p-Value |
---|---|---|---|
HR rest (bpm) | 63.3 ± 10.8 | 71.2 ± 12.5 | 0.041 |
SAP rest (mmHg) | 118.2 ± 9.8 | 118.6 ± 9.8 | 0.848 |
DAP rest (mmHg) | 75.9 ± 6.7 | 76.9 ± 8.7 | 0.591 |
SpO2 rest (%) | 98.1 ± 0.8 | 97.9 ± 0.9 | 0.361 |
FVC% ° (%) | 105.1 ± 11.1 | 104.7 ± 13.5 | 0.408 |
FEV1% § (%) | 106.2 ± 10.7 | 105.7 ± 11.8 | 0.277 |
MVV (L/min) | 169.9 ± 33.1 | 169.0 ± 34.3 | 0.618 |
HR max (bpm) | 165.1 ± 15.2 | 163.0 ± 16.9 | 0.323 |
SAP max (mmHg) | 157.5 ± 20.5 | 166.3 ± 22.5 | 0.771 |
DAP max (bpm) | 88.6 ± 8.9 | 84.7 ± 10.3 | 0.186 |
Power (Watt) | 170.1 ± 38.6 | 159.0 ± 41.5 | 0.154 |
Peak RER | 1.16 ± 0.07 | 1.16 ± 0.08 | 0.980 |
Peak VO2% ç (%) | 84.14 ± 14.7 | 84.9 ± 15.6 | 0.739 |
VE/VCO2 slope | 24.5 ± 3.0 | 25.4 ± 4.1 | 0.185 |
BR (%) | 51.4 ± 11.2 | 51.3 ± 9.9 | 0.973 |
Peak O2 pulse * (mL/beat) | 13.5 ± 2.7 | 13.9 ± 2.6 | 0.748 |
VO2/WR slope (mL/min/Watt) | 10.6 ± 1.0 | 10.6 ± 1.3 | 0.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segreti, A.; Fossati, C.; Monticelli, L.M.; Valente, D.; Polito, D.; Guerra, E.; Zampoli, A.; Albimonti, G.; Zampogna, B.; Vasta, S.; et al. Changes in Cardiopulmonary Capacity Parameters after Surgery: A Pilot Study Exploring the Link between Heart Function and Knee Surgery. J. Funct. Morphol. Kinesiol. 2024, 9, 172. https://doi.org/10.3390/jfmk9030172
Segreti A, Fossati C, Monticelli LM, Valente D, Polito D, Guerra E, Zampoli A, Albimonti G, Zampogna B, Vasta S, et al. Changes in Cardiopulmonary Capacity Parameters after Surgery: A Pilot Study Exploring the Link between Heart Function and Knee Surgery. Journal of Functional Morphology and Kinesiology. 2024; 9(3):172. https://doi.org/10.3390/jfmk9030172
Chicago/Turabian StyleSegreti, Andrea, Chiara Fossati, Luigi Maria Monticelli, Daniele Valente, Dajana Polito, Emiliano Guerra, Andrea Zampoli, Giorgio Albimonti, Biagio Zampogna, Sebastiano Vasta, and et al. 2024. "Changes in Cardiopulmonary Capacity Parameters after Surgery: A Pilot Study Exploring the Link between Heart Function and Knee Surgery" Journal of Functional Morphology and Kinesiology 9, no. 3: 172. https://doi.org/10.3390/jfmk9030172
APA StyleSegreti, A., Fossati, C., Monticelli, L. M., Valente, D., Polito, D., Guerra, E., Zampoli, A., Albimonti, G., Zampogna, B., Vasta, S., Papalia, R., Antonelli Incalzi, R., Pigozzi, F., & Grigioni, F. (2024). Changes in Cardiopulmonary Capacity Parameters after Surgery: A Pilot Study Exploring the Link between Heart Function and Knee Surgery. Journal of Functional Morphology and Kinesiology, 9(3), 172. https://doi.org/10.3390/jfmk9030172