Impact of a 20-Week Resistance Training Program on the Force–Velocity Profile in Novice Lifters Using Isokinetic Two-Point Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Population
2.3. Design
2.4. Training Program
2.5. Procedures
2.5.1. Isokinetic Testing
2.5.2. Assessment of the F-V Relationship from Isokinetic Measurements
2.5.3. Cardiopulmonary Exercise Testing
2.5.4. Body Composition
2.6. Statistics
3. Results
3.1. Characteristics of Participants
3.2. Changes in F-V Profile
Differences in Agonistic Muscles
3.3. Associations Between F-V Parameters and 1-RM Procedure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, J.; Csapo, R.; Ara, I.; Alegre, L.M. On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic. Front. Physiol. 2019, 10, 769. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Cuk, I.; Mirkov, D.; Nedeljkovic, A.; Kukolj, M.; Ugarkovic, D.; Jaric, S. Force-Velocity Property of Leg Muscles in Individuals of Different Level of Physical Fitness. Sports Biomech. Int. Soc. Biomech. Sports 2016, 15, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Cvetic, D.; Mirkov, D.M. Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants’ Physical Activity Levels. Int. J. Environ. Res. Public Health 2020, 17, 8570. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.-B. Optimized Training for Jumping Performance Using the Force-Velocity Imbalance: Individual Adaptation Kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef]
- Samozino, P.; Edouard, P.; Sangnier, S.; Brughelli, M.; Gimenez, P.; Morin, J.-B. Force-Velocity Profile: Imbalance Determination and Effect on Lower Limb Ballistic Performance. Int. J. Sports Med. 2014, 35, 505–510. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the Force-Velocity Profile of Athletes Using Weightlifting Derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.-B. Effectiveness of an Individualized Training Based on Force-Velocity Profiling During Jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef]
- Hill, A.V. The Heat of Shortening and the Dynamic Constants of Muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1938, 126, 136–195. [Google Scholar] [CrossRef]
- Rivière, J.R.; Morin, J.-B.; Bowen, M.; Cross, M.R.; Messonnier, L.A.; Samozino, P. Exploring the Low Force-High Velocity Domain of the Force-Velocity Relationship in Acyclic Lower-Limb Extensions. Sports Med. Open 2023, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F. Why Is the Force-Velocity Relationship in Leg Press Tasks Quasi-Linear Rather than Hyperbolic? J. Appl. Physiol. 2012, 112, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, M.Z.; Djuric, S.; Cuk, I.; Suzovic, D.; Jaric, S. A Simple Method for Assessment of Muscle Force, Velocity, and Power Producing Capacities from Functional Movement Tasks. J. Sports Sci. 2017, 35, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, K.; Liu, K.; Wang, Q.; Ma, Y.; Pang, B.; Huang, L.; Ma, Y. New Prediction Equations for Knee Isokinetic Strength in Young and Middle-Aged Non-Athletes. BMC Public Health 2023, 23, 2558. [Google Scholar] [CrossRef]
- Wilk, K.E.; Arrigo, C.A.; Davies, G.J. Isokinetic Testing: Why It Is More Important Today than Ever. Int. J. Sports Phys. Ther. 2024, 19, 374–380. [Google Scholar] [CrossRef]
- Grbic, V.; Djuric, S.; Knezevic, O.M.; Mirkov, D.M.; Nedeljkovic, A.; Jaric, S. A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors. Int. J. Sports Med. 2017, 38, 741–746. [Google Scholar] [CrossRef]
- Sašek, M.; Mirkov, D.M.; Hadžić, V.; Šarabon, N. The Validity of the 2-Point Method for Assessing the Force-Velocity Relationship of the Knee Flexors and Knee Extensors: The Relevance of Distant Force-Velocity Testing. Front. Physiol. 2022, 13, 849275. [Google Scholar] [CrossRef]
- Garcia-Ramos, A.; Jaric, S. Two-Point Method: A Quick and Fatigue-Free Procedure for Assessment of Muscle Mechanical Capacities and the 1 Repetition Maximum. Strength Cond. J. 2018, 40, 54–66. [Google Scholar] [CrossRef]
- Janicijevic, D.; García-Ramos, A.; Knezevic, O.M.; Mirkov, D.M. Feasibility of the Two-Point Method for Assessing the Force-Velocity Relationship during Lower-Body and Upper-Body Isokinetic Tests. J. Sports Sci. 2019, 37, 2396–2402. [Google Scholar] [CrossRef]
- Drigny, J.; Calmès, A.; Reboursière, E.; Hulet, C.; Gauthier, A. Changes in the Force-Velocity Relationship of Knee Muscles After Anterior Cruciate Ligament Reconstruction Using the Isokinetic 2-Point Model. Int. J. Sports Physiol. Perform. 2023, 18, 1336–1344. [Google Scholar] [CrossRef]
- Calmels, P.; Minaire, P. A Review of the Role of the Agonist/Antagonist Muscle Pairs Ratio in Rehabilitation. Disabil. Rehabil. 1995, 17, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Gentil, P.; Del Vecchio, F.B.; Paoli, A.; Schoenfeld, B.J.; Bottaro, M. Isokinetic Dynamometry and 1RM Tests Produce Conflicting Results for Assessing Alterations in Muscle Strength. J. Hum. Kinet. 2017, 56, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Rivière, J.R.; Rossi, J.; Jimenez-Reyes, P.; Morin, J.-B.; Samozino, P. Where Does the One-Repetition Maximum Exist on the Force-Velocity Relationship in Squat? Int. J. Sports Med. 2017, 38, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Kurobe, Y.; Momose, K. Use of Force-Velocity Relationship to Estimate the One-Repetition Maximum Leg Press Exercise among Young Females. J. Phys. Ther. Sci. 2023, 35, 247–251. [Google Scholar] [CrossRef]
- Pamart, N.; Drigny, J.; Azambourg, H.; Remilly, M.; Macquart, M.; Lefèvre, A.; Lahjaily, K.; Parienti, J.J.; Rocamora, A.; Guermont, H.; et al. Effects of a 20-Week High-Intensity Strength Training Program on Muscle Strength Gain and Cardiac Adaptation in Untrained Men: Preliminary Results of a Prospective Longitudinal Study. JMIR Form. Res. 2023, 7, e47876. [Google Scholar] [CrossRef]
- Kraemer, W.; Ratamess, N.; Fry, A.; French, D.; Maud, P.; Foster, C. Strength Training: Development and Evaluation of Methodology. In Physiological Assessment of Human Fitness; Maud, P.J., Foster, C., Eds.; Human Kinetics: Champaign, IL, USA, 1995; pp. 119–150. [Google Scholar]
- Drigny, J.; Ferrandez, C.; Gauthier, A.; Guermont, H.; Praz, C.; Reboursière, E.; Hulet, C. Knee Strength Symmetry at 4 Months Is Associated with Criteria and Rates of Return to Sport after Anterior Cruciate Ligament Reconstruction. Ann. Phys. Rehabil. Med. 2022, 65, 101646. [Google Scholar] [CrossRef]
- Gauthier, A.; Davenne, D.; Martin, A.; Van Hoecke, J. Time of Day Effects on Isometric and Isokinetic Torque Developed during Elbow Flexion in Humans. Eur. J. Appl. Physiol. 2001, 84, 249–252. [Google Scholar] [CrossRef]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological Approach to the First and Second Lactate Threshold in Incremental Cardiopulmonary Exercise Testing. Eur. J. Cardiovasc. Prev. Rehabil. Off. J. Eur. Soc. Cardiol. Work. Groups Epidemiol. Prev. Card. Rehabil. Exerc. Physiol. 2008, 15, 726–734. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of Whole-Body and Segmental Skeletal Muscle Mass Using Phase-Sensitive 8-Electrode Medical Bioelectrical Impedance Devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What Makes a BIA Equation Unique? Validity of Eight-Electrode Multifrequency BIA to Estimate Body Composition in a Healthy Adult Population. Eur. J. Clin. Nutr. 2013, 67 (Suppl. S1), S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.C.; Ellefsen, S.; Baar, K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018, 8, a029769. [Google Scholar] [CrossRef] [PubMed]
- Škarabot, J.; Balshaw, T.G.; Maeo, S.; Massey, G.J.; Lanza, M.B.; Maden-Wilkinson, T.M.; Folland, J.P. Neural Adaptations to Long-Term Resistance Training: Evidence for the Confounding Effect of Muscle Size on the Interpretation of Surface Electromyography. J. Appl. Physiol. 2021, 131, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Zazulak, B.T. Hamstrings to Quadriceps Peak Torque Ratios Diverge between Sexes with Increasing Isokinetic Angular Velocity. J. Sci. Med. Sport 2008, 11, 452–459. [Google Scholar] [CrossRef]
- Garrett, W.E.; Califf, J.C.; Bassett, F.H. Histochemical Correlates of Hamstring Injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef]
- Hopwood, H.J.; Bellinger, P.M.; Compton, H.R.; Bourne, M.N.; Minahan, C. The Relevance of Muscle Fiber Type to Physical Characteristics and Performance in Team-Sport Athletes. Int. J. Sports Physiol. Perform. 2023, 18, 223–230. [Google Scholar] [CrossRef]
- Schuermans, J.; Witvrouw, E.; Wezenbeek, E.; Lievens, E. Hamstring Muscle Fibre Typology Is Not Associated with Hamstring Strain Injury History or Performance in Amateur Male Soccer Players: A Retrospective Magnetic Resonance Spectroscopy Study. Biol. Sport 2023, 40, 1177–1186. [Google Scholar] [CrossRef]
- Evangelidis, P.E.; Massey, G.J.; Ferguson, R.A.; Wheeler, P.C.; Pain, M.T.G.; Folland, J.P. The Functional Significance of Hamstrings Composition: Is It Really a “Fast” Muscle Group? Scand. J. Med. Sci. Sports 2017, 27, 1181–1189. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.-M.; Wagner, A.; Magnusson, S.P.; Halkjær-Kristensen, J.; Simonsen, E.B. A Mechanism for Increased Contractile Strength of Human Pennate Muscle in Response to Strength Training: Changes in Muscle Architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef]
- Ferraresi, C.; Baldissera, V.; Perez, S.E.A.; Júnior, E.M.; Bagnato, V.; Parizotto, N. One-Repetition Maximum Test and Isokinetic Leg Extension and Flexion: Correlations and Predicted Values. Isokinet. Exerc. Sci. 2013, 21, 69–76. [Google Scholar] [CrossRef]
- Ettema, G. The Force-Velocity Profiling Concept for Sprint Running Is a Dead End. Int. J. Sports Physiol. Perform. 2024, 19, 88–91. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Jarosz, J.; Matykiewicz, P.; Wilk, M.; Bialas, M.; Zajac, A.; Golas, A. A Comparison of Muscle Activity of the Dominant and Non-Dominant Side of the Body during Low versus High Loaded Bench Press Exercise Performed to Muscular Failure. J. Electromyogr. Kinesiol. 2021, 56, 102513. [Google Scholar] [CrossRef]
Session 1 | Session 2 | Session 3 | |
---|---|---|---|
Exercise #1 | Leg extension | Inclined press | Leg extension |
Exercise #2 | Leg curl | Preacher curl | Leg curl |
Exercise #3 | Lat pull-down | Machine pullover | Lat pull-down |
Exercise #4 | Bench press | Butterfly | Bench press |
Variables | Baseline | M3 | M5 | F Stat | p-Value | Effect Size (η2) |
---|---|---|---|---|---|---|
Age (years) | 22.0 ± 3.44 | - | - | |||
Height (m) | 1.78 ± 0.06 | - | - | |||
Weigh (kg) | 70.2 ± 12.0 | 72.3 ± 11.1 * | 72.4 ± 12.1 * | 10.603 | <0.001 | 0.570 |
BMI (kg/m2) | 22.1 ± 3.3 | 22.7 ± 3.0 * | 22.8 ± 3.3 * | 9.717 | 0.002 | 0.548 |
Body fat mass (kg) | 11.3 ± 7.5 | 11.3 ± 7.6 | 12.1 ± 7.5 | 1.732 | 0.209 | 0.178 |
Skeletal muscle mass (kg) | 29.0 ± 3.7 | 30.4 ± 4.0 * | 29.9 ± 3.7 * | 24.000 | <0.001 | 0.750 |
O2peak (mLO2‧kg−1‧min−1) | 42.2 ± 7.7 | - | 42.3 ± 6.0 | 0.002 | 0.963 | 0.000 |
VT1 | 27.7 ± 8.7 | - | 27.5 ± 8.0 | 0.006 | 0.938 | 0.000 |
O2peak maximal load (Watts) | 185.9 ± 41.2 | - | 201.8 ± 37.5 | 18.000 | <0.001 | 0.529 |
(a) Theoretical Maximum Force(F0) | ||||||||
F0 | Time Effect | |||||||
Baseline | M3 | M5 | F Stat | p-Value | Effect Size (η2) | |||
Elbow flexion | Dominant | 12.05 ± 3.15 | 13.24 ± 3.42 | 13.49 ± 2.8 | 1204 | 0.326 | 0.131 | |
Non-dominant | 12.24 ± 2.48 | 12.87 ± 3.51 | 13.82 ± 3.52 | 2.659 | 0.103 | 0.262 | ||
Elbow extension | Dominant | 11.87 ± 2.33 | 13.69 ± 2.70 ††† | 14.40 ± 2.43 ††† | 11.994 | <0.001 | 0.600 | |
Non-dominant | 12.41 ± 3.06 | 14.27 ± 3.11 | 14.84 ± 2.95 | 5.501 | 0.016 | 0.423 | ||
Knee flexion | Dominant | 18.72 ± 4.40 | 21.90 ± 3.95 ††† | 24.97 ± 5.52 †††,*** | 20.323 | <0.001 | 0.718 | |
Non-dominant | 18.65 ± 4.59 | 23.04 ± 4.56 ††† | 24.32 ± 5.81 | 14.659 | <0.001 | 0.662 | ||
Knee extension | Dominant | 33.81 ± 6.96 | 41.02 ± 5.76 ††† | 45.32 ± 8.08 †††,** | 60.101 | <0.001 | 0.883 | |
Non-dominant | 34.19 ± 8.48 | 43.37 ± 8.00 ††† | 45.57 ± 8.62 ††† | 35.820 | <0.001 | 0.827 | ||
(b) Force–Velocity Slope(F-V slope) | ||||||||
F-V Slope | Time Effect | |||||||
Baseline | M3 | M5 | F Stat | p-Value | Effect Size (η2) | |||
Elbow flexion | Dominant | −2.51 ± 1.86 | −2.32 ± 2.06 | −2.37 ± 1.85 | 0.047 | 0.954 | 0.006 | |
Non-dominant | −2.47 ± 2.31 | −2.19 ± 2.01 | −2.40 ± 2.14 | 0.203 | 0.819 | 0.025 | ||
Elbow extension | Dominant | −2.42 ± 2.14 | −3.20 ± 1.92 | −3.09 ± 2.32 | 1.045 | 0.374 | 0.116 | |
Non-dominant | −2.89 ± 2.01 | −3.50 ± 2.11 | −3.41 ± 2.34 | 0.422 | 0.663 | 0.053 | ||
Knee flexion | Dominant | −4.58 ± 3.43 | −5.21 ± 2.49 | −6.31 ± 2.67 †,* | 4.264 | 0.033 | 0.348 | |
Non-dominant | −4.47 ± 2.49 | −6.35 ± 3.06 † | −5.86 ± 2.24 † | 4.457 | 0.030 | 0.373 | ||
Knee extension | Dominant | −9.20 ± 4.67 | −12.86 ± 3.73 †† | −14.92 ± 4.56 ††† | 12.456 | <0.001 | 0.609 | |
Non-dominant | −9.71 ± 5.00 | −14.41 ± 4.27 ††† | −14.36 ± 3.93 ††† | 17.092 | <0.001 | 0.695 |
Dominant | Non-Dominant | |||||
---|---|---|---|---|---|---|
Isokinetic Testing | 1-RM | F-V Parameter | r [95% CI] | p-Value | r [95% CI] | p-Value |
Knee extensors | Leg extension | F0 | 0.83 [0.693, 0.913] | 0.001 | 0.83 [0.682, 0.912] | 0.001 |
F-V slope | −0.69 [−0.829, −0.456] | 0.001 | −0.62 [−0.791, −0.355] | 0.001 | ||
Knee extensors | Leg Press | F0 | 0.82 [0.665, 0.904] | 0.001 | 0.83 [0.682, 0.912] | 0.001 |
F-V slope | −0.68 [−0.827, −0.45] | 0.001 | −0.67 [−0.82, −0.423] | 0.001 | ||
Knee flexion | Leg curl | F0 | 0.72 [0.51, 0.85] | 0.001 | 0.68 [0.443, 0.827] | 0.001 |
F-V slope | −0.29 [−0.566, 0.051] | 0.094 | −0.37 [−0.626, −0.031] | 0.034 | ||
Elbow flexion | Preacher curl | F0 | 0.38 [0.056, 0.634] | 0.024 | 0.38 [0.049, 0.637] | 0.026 |
F-V slope | −0.07 [−0.394, 0.269] | 0.688 | 0.09 [−0.259, 0.413] | 0.627 | ||
Elbow extension | Bench press | F0 | 0.63 [0.37, 0.794] | 0.001 | 0.51 [0.209, 0.724] | 0.002 |
F-V slope | −0.32 [−0.594, 0.01] | 0.057 | −0.01 [−0.349, 0.327] | 0.943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drigny, J.; Pamart, N.; Azambourg, H.; Remilly, M.; Reboursière, E.; Gauthier, A.; Hodzic, A. Impact of a 20-Week Resistance Training Program on the Force–Velocity Profile in Novice Lifters Using Isokinetic Two-Point Testing. J. Funct. Morphol. Kinesiol. 2024, 9, 222. https://doi.org/10.3390/jfmk9040222
Drigny J, Pamart N, Azambourg H, Remilly M, Reboursière E, Gauthier A, Hodzic A. Impact of a 20-Week Resistance Training Program on the Force–Velocity Profile in Novice Lifters Using Isokinetic Two-Point Testing. Journal of Functional Morphology and Kinesiology. 2024; 9(4):222. https://doi.org/10.3390/jfmk9040222
Chicago/Turabian StyleDrigny, Joffrey, Nicolas Pamart, Hélène Azambourg, Marion Remilly, Emmanuel Reboursière, Antoine Gauthier, and Amir Hodzic. 2024. "Impact of a 20-Week Resistance Training Program on the Force–Velocity Profile in Novice Lifters Using Isokinetic Two-Point Testing" Journal of Functional Morphology and Kinesiology 9, no. 4: 222. https://doi.org/10.3390/jfmk9040222
APA StyleDrigny, J., Pamart, N., Azambourg, H., Remilly, M., Reboursière, E., Gauthier, A., & Hodzic, A. (2024). Impact of a 20-Week Resistance Training Program on the Force–Velocity Profile in Novice Lifters Using Isokinetic Two-Point Testing. Journal of Functional Morphology and Kinesiology, 9(4), 222. https://doi.org/10.3390/jfmk9040222