Regional Body Composition and Strength, Not Total Body Composition, Are Determinants of Performance in Climbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedures
2.2.1. Anthropometry and Body Composition
2.2.2. Strength Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez, X.; Torregrossa, M.; Woodman, T.; Jones, G.; Llewellyn, D.J. Identification of Parameters That Predict Sport Climbing Performance. Front. Psychol. 2019, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Games, O. Tokyo 2020 Sport Climbing Results. Available online: https://olympics.com/en/olympic-games/tokyo-2020/results/sport-climbing (accessed on 10 January 2020).
- Committee, I.O. Sport Climbing. Available online: https://olympics.com/en/paris-2024/sports/sport-climbing (accessed on 3 October 2024).
- Sheel, A.W. Physiology of sport rock climbing. Br. J. Sports Med. 2004, 38, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B. Physiology of difficult rock climbing. Eur. J. Appl. Physiol. 2004, 91, 361–372. [Google Scholar] [CrossRef]
- Giles, L.V.; Rhodes, E.C.; Taunton, J.E. The physiology of rock climbing. Sports Med. 2006, 36, 529–545. [Google Scholar] [CrossRef] [PubMed]
- España-Romero, V.; Jensen, R.L.; Sanchez, X.; Ostrowski, M.L.; Szekely, J.E.; Watts, P.B. Physiological responses in rock climbing with repeated ascents over a 10-week period. Eur. J. Appl. Physiol. 2012, 112, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Vigouroux, L.; Devise, M.; Cartier, T.; Aubert, C.; Berton, E. Performing pull-ups with small climbing holds influences grip and biomechanical arm action. J. Sports Sci. 2019, 37, 886–894. [Google Scholar] [CrossRef]
- Baláš, J.; Pecha, O.; Martin, A.J.; Cochrane, D. Hand–arm strength and endurance as predictors of climbing performance. Eur. J. Sport Sci. 2012, 12, 16–25. [Google Scholar] [CrossRef]
- Fryer, S.; Stone, K.J.; Sveen, J.; Dickson, T.; España-Romero, V.; Giles, D.; Baláš, J.; Stoner, L.; Draper, N. Differences in forearm strength, endurance, and hemodynamic kinetics between male boulderers and lead rock climbers. Eur. J. Sport Sci. 2017, 17, 1177–1183. [Google Scholar] [CrossRef]
- MacLeod, D.; Sutherland, D.L.; Buntin, L.; Whitaker, A.; Aitchison, T.; Watt, I.; Bradley, J.; Grant, S. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J. Sports Sci. 2007, 25, 1433–1443. [Google Scholar] [CrossRef]
- Mermier, C.M.; Janot, J.M.; Parker, D.L.; Swan, J.G. Physiological and anthropometric determinants of sport climbing performance. Br. J. Sports Med. 2000, 34, 359–365; discussion 366. [Google Scholar] [CrossRef]
- Ginszt, M.; Saito, M.; Zięba, E.; Majcher, P.; Kikuchi, N. Body Composition, Anthropometric Parameters, and Strength-Endurance Characteristics of Sport Climbers: A Systematic Review. J. Strength Cond. Res. 2023, 37, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B.; Hoffman, M.D.; Sulentic, J.E.; Drobish, K.M.; Gibbons, T.P.; Newbury, V.S.; Mittelstadt, S.W.; O’Hagan, K.P.; Clifford, P.S. Physiological responses to specific maximal exercise tests for cross-country skiing. Can. J. Appl. Physiol. = Rev. Can. Physiol. Appl. 1993, 18, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.; Newbury, V.; Sulentic, J. Acute changes in handgrip strength, endurance, and blood lactate with sustained sport rock climbing. J. Sports Med. Phys. Fit. 1996, 36, 255–260. [Google Scholar]
- MacKenzie, R.; Monaghan, L.; Masson, R.A.; Werner, A.K.; Caprez, T.S.; Johnston, L.; Kemi, O.J. Physical and Physiological Determinants of Rock Climbing. Int. J. Sports Physiol. Perform. 2020, 15, 168–179. [Google Scholar] [CrossRef]
- Cutts, A.; Bollen, S.R. Grip strength and endurance in rock climbers. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1993, 207, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.B.; Joubert, L.M.; Lish, A.K.; Mast, J.D.; Wilkins, B. Anthropometry of young competitive sport rock climbers. Br. J. Sports Med. 2003, 37, 420–424. [Google Scholar] [CrossRef]
- Ozimek, M.; Krawczyk, M.; Zadarko, E.; Barabasz, Z.; Ambroży, T.; Stanula, A.; Mucha, D.K.; Jurczak, A.; Mucha, D. Somatic Profile of the Elite Boulderers in Poland. J. Strength Cond. Res. 2017, 31, 963–970. [Google Scholar] [CrossRef]
- Puletic, M.; Stankovic, D. Series: Physical Education; Sport. The Influence of Somatotype Components on Success in Sport Climbing. Facta Univ. Ser. Phys. Educ. Sport 2014, 105–111. Available online: https://casopisi.junis.ni.ac.rs/index.php/FUPhysEdSport/article/view/292 (accessed on 7 November 2024).
- Baláš, J.; Michailov, M.; Giles, D.; Kodejška, J.; Panáčková, M.; Fryer, S. Active recovery of the finger flexors enhances intermittent handgrip performance in rock climbers. Eur. J. Sport Sci. 2016, 16, 764–772. [Google Scholar] [CrossRef]
- Fanchini, M.; Violette, F.; Impellizzeri, F.M.; Maffiuletti, N.A. Differences in climbing-specific strength between boulder and lead rock climbers. J. Strength Cond. Res. 2013, 27, 310–314. [Google Scholar] [CrossRef]
- Laffaye, G.; Collin, J.M.; Levernier, G.; Padulo, J. Upper-limb power test in rock-climbing. Int. J. Sports Med. 2014, 35, 670–675. [Google Scholar] [CrossRef]
- Grant, S.; Hynes, V.; Whittaker, A.; Aitchison, T. Anthropometric, strength, endurance and flexibility characteristics of elite and recreational climbers. J. Sports Sci. 1996, 14, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Levernier, G.; Laffaye, G. Rate of force development and maximal force: Reliability and difference between non-climbers, skilled and international climbers. Sports Biomech. 2021, 20, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Levernier, G.; Laffaye, G. The Rate of Force Development: A New Biomechanical Key Factor in Climbing. Available online: https://www.semanticscholar.org/paper/The-rate-of-force-developement-%3A-a-new-biomechanical-Lvernier-Laffaye/027fa10111baefe8fae34f94887451f964920680 (accessed on 7 November 2024).
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.; et al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sports Technol. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2018, 66, 1–9. [Google Scholar] [CrossRef]
- Fuller, N.J.; Laskey, M.A.; Elia, M. Assessment of the composition of major body regions by dual-energy X-Ray absorptiometry (DEXA), with special reference to limb muscle mass. Clin. Physiol. 1992, 12, 253–266. [Google Scholar] [CrossRef]
- Kim, J.; Heshka, S.; Gallagher, D.; Kotler, D.P.; Mayer, L.; Albu, J.; Shen, W.; Freda, P.U.; Heymsfield, S.B. Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-Ray absorptiometry in adults. J. Appl. Physiol. 2004, 97, 655–660. [Google Scholar] [CrossRef]
- MacDermid, J.; Solomon, G.; Valdes, K. Clinical Assessment Recommendations; American Society of Hand Therapists: Mount Laurel, NJ, USA, 2015. [Google Scholar]
- Savva, C.; Karagiannis, C.; Rushton, A. Test-retest reliability of grip strength measurement in full elbow extension to evaluate maximum grip strength. J. Hand Surg. Eur. Vol. 2013, 38, 183–186. [Google Scholar] [CrossRef]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014, 44, 603–623. [Google Scholar] [CrossRef]
- Panissa, V.L.; Azevedo, N.R.; Julio, U.F.; Andreato, L.V.; Pinto, E.S.C.M.; Hardt, F.; Franchini, E. Maximum number of repetitions, total weight lifted and neuromuscular fatigue in individuals with different training backgrounds. Biol. Sport 2013, 30, 131–136. [Google Scholar] [CrossRef]
- España-Romero, V.; Artero, E.G.; Ortega, F.; Jiménez-Pavón, D.; Gutiérrez, A.; Castillo, M.; Ruiz, J. Aspectos Fisiológicos de la Escalada Deportiva. 2009. Available online: https://digibug.ugr.es/handle/10481/33148 (accessed on 7 November 2024).
- Mazić, S.; Lazović, B.; Delić, M.; Lazić, J.S.; Aćimović, T.; Brkić, P. Body composition assessment in athletes: A systematic review. Med. Pregl. 2014, 67, 255–260. [Google Scholar] [CrossRef]
- Arias Téllez, M.J.; Carrasco, F.; España Romero, V.; Inostroza, J.; Bustamante, A.; Solar Altamirano, I. A comparison of body composition assessment methods in climbers: Which is better? PLoS ONE 2019, 14, e0224291. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Roloff, I.; Baumann, H.; Schöffl, V.; Weineck, J.; Kalender, W.; Engelke, K. Effect of exercise, body composition, and nutritional intake on bone parameters in male elite rock climbers. Int. J. Sports Med. 2006, 27, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar]
- Liao, K.-H. Optimal handle grip span for maximum hand grip strength and accurate grip control strength exertion according to individual hand size. J. Osteoporos. Phys. Act. 2016, 4, 1–6. [Google Scholar] [CrossRef]
- España-Romero, V.; Ortega, F.B.; Vicente-Rodríguez, G.; Artero, E.G.; Rey, J.P.; Ruiz, J.R. Elbow position affects handgrip strength in adolescents: Validity and reliability of Jamar, DynEx, and TKK dynamometers. J. Strength Cond. Res. 2010, 24, 272–277. [Google Scholar] [CrossRef]
- España-Romero, V.; Ortega Porcel, F.B.; Artero, E.G.; Jiménez-Pavón, D.; Gutiérrez Sainz, A.; Castillo Garzón, M.J.; Ruiz, J.R. Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers. Eur. J. Appl. Physiol. 2009, 107, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Stien, N.; Saeterbakken, A.H.; Hermans, E.; Vereide, V.A.; Olsen, E.; Andersen, V. Comparison of climbing-specific strength and endurance between lead and boulder climbers. PLoS ONE 2019, 14, e0222529. [Google Scholar] [CrossRef]
- Levernier, G.; Samozino, P.; Laffaye, G. Force-Velocity-Power Profile in High-Elite Boulder, Lead, and Speed Climber Competitors. Int. J. Sports Physiol. Perform. 2020, 22, 1–7. [Google Scholar] [CrossRef]
Level 1 n = 9 | Level 2 n = 11 | Level 3 n = 10 | p Value | |
---|---|---|---|---|
Age (y.) | 25.3 ± 3.2 | 26.2 ± 5.9 | 26.9 ± 5.6 | 0.803 |
Weight (kg) | 63.5 ± 6.4 | 65.5 ± 6.0 | 69.0 ± 6.13 | 0.155 |
Height (m) | 1.71 ± 0.06 | 1.73 ± 0.04 | 1.75 ± 0.07 | 0.453 |
BMI (kg/m2) | 21.6 ± 1.8 | 21.9 ± 1.5 | 22.6 ± 1.3 | 0.358 |
Total FM (%) | 15.3 ± 2.9 | 14.7 ± 2.9 | 15.2 ± 2.8 | 0.691 |
Total LM (kg) | 51.7 ± 4.9 | 53.5 ± 4.2 | 56.0 ± 5.6 | 0.178 |
TMM (kg) | 27.9 ± 3.4 | 29.0 ± 2.5 | 30.9 ± 3.7 | 0.129 |
, RTW | 43.9 ± 1.7 | 44.3 ± 2.0 | 44.7 ± 1.7 | 0.610 |
FLM (kg), Right side | 1.02 ± 0.13 | 1.09 ± 0.10 | 1.16 ± 0.17 | 0.084 |
, Left side | 1.00 ± 0.11 a | 1.08 ± 0.10 a | 1.16 ± 0.16 b | 0.047 |
, Dominant | 1.02 ± 0.13 | 1.096 ± 0.097 | 1.17 ± 0.17 | 0.061 |
, Assistant | 1.00 ± 0.1 a | 1.08 ± 0.096 a | 1.16 ± 0.169 b | 0.041 |
UBLM (kg) | 15.6 ± 1.66 | 15.5 ± 2.09 | 16.5 ± 1.31 | 0.414 |
, RTW | 0.20 ± 0.01 | 0.19 ± 0.02 | 0.20 ± 0.01 | 0.460 |
Level 1 n = 9 | Level 2 n = 11 | Level 3 n = 10 | p Value | |
---|---|---|---|---|
Right hand (kg) | 48.4 ± 7.1 | 51.1 ± 6.4 | 55.8 ± 11.2 | 0.177 |
, RTW | 0.764 ± 0.087 | 0.786 ± 0.114 | 0.809 ± 0.147 | 0.721 |
, adj. TMM # | 49.9 (44.3–55.5) | 51.5 (46.5–56.4) | 54.1 (48.7–59.4) | 0.572 |
, adj. FLM & | 51.0 (45.8–56.3) | 51.1 (46.6–55.6) | 53.4 (48.5–58.4) | 0.734 |
Left hand (kg) | 49.1 ± 6.3 | 48.6 ± 7.5 | 54.4 ± 7.9 | 0.158 |
, RTW | 0.774 ± 0.066 | 0.746 ± 0.127 | 0.789 ± 0.099 | 0.631 |
, adj. TMM # | 50.6 (45.9–55.2) | 48.9 (44.8–53.0) | 52.7 (48.2–57.2) | 0.456 |
, adj. FLM & | 51.6 (47.1–56.1) | 48.6 (44.7–52.5) | 52.1 (47.8–56.4) | 0.392 |
Dominant hand (kg) | 49.1 ± 6.9 | 51.1 ± 6.4 | 55.0 ± 10.8 | 0.300 |
, RTW | 0.773 ± 0.074 | 0.786 ± 0.114 | 0.798 ± 0.145 | 0.903 |
, adj. TMM # | 50.6 (45.2–56.0) | 51.5 (46.7–56.2) | 53.2 (48.0–58.5) | 0.777 |
, adj. FLM & | 51.6 (46.4–56.9) | 51.2 (46.7–55.7) | 52.6 (47.7–57.6) | 0.910 |
Assistant hand (kg) | 48.4 ± 6.5 | 48.5 ± 7.5 | 55.2 ± 8.5 | 0.092 |
, RTW | 0.764 ± 0.080 | 0.746 ± 0.127 | 0.800 ± 0.103 | 0.516 |
, adj. TMM # | 49.9 (45.0–54.8) | 48.9 (44.6–53.2) | 53.5 (48.8–58.2) | 0.337 |
, adj. FLM & | 51.2 (46.5–55.8) | 48.7 (44.7–52.6) | 52.6 (48.2–57.0) | 0.379 |
1-MR-UBTS (kg) | 31.4 ± 9.9 | 38.2 ± 16.7 | 44.3 ± 10.2 | 0.047 |
, RTW | 0.50 ± 0.16 | 0.59 ± 0.19 | 0.65 ± 0.17 | 0.202 |
, adj. TMM # | 30.9 (23.2–38.6) | 38.1 (31.3–44.8) | 44.8 (37.5–52.2) | 0.049 |
, adj. UBLM * | 31.2 (23.8–38.7) | 38.0 (31.2–44.8) | 44.6 (37.4–51.8) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, F.; Arias-Tellez, M.J.; Solar-Altamirano, I.; Inostroza, J.; Carrasco, G. Regional Body Composition and Strength, Not Total Body Composition, Are Determinants of Performance in Climbers. J. Funct. Morphol. Kinesiol. 2024, 9, 228. https://doi.org/10.3390/jfmk9040228
Carrasco F, Arias-Tellez MJ, Solar-Altamirano I, Inostroza J, Carrasco G. Regional Body Composition and Strength, Not Total Body Composition, Are Determinants of Performance in Climbers. Journal of Functional Morphology and Kinesiology. 2024; 9(4):228. https://doi.org/10.3390/jfmk9040228
Chicago/Turabian StyleCarrasco, Fernando, Maria Jose Arias-Tellez, Ignacio Solar-Altamirano, Jorge Inostroza, and Gabriela Carrasco. 2024. "Regional Body Composition and Strength, Not Total Body Composition, Are Determinants of Performance in Climbers" Journal of Functional Morphology and Kinesiology 9, no. 4: 228. https://doi.org/10.3390/jfmk9040228
APA StyleCarrasco, F., Arias-Tellez, M. J., Solar-Altamirano, I., Inostroza, J., & Carrasco, G. (2024). Regional Body Composition and Strength, Not Total Body Composition, Are Determinants of Performance in Climbers. Journal of Functional Morphology and Kinesiology, 9(4), 228. https://doi.org/10.3390/jfmk9040228