Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Measurements
2.3.1. Portable Gas Analyzer Data
2.3.2. Near-Infrared Spectroscopy (NIRS) Data
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Sex-Related Differences
4.2. Performance Level Differences
4.3. Vertical Kilometer Key Performance Factors
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balducci, P.; Clémençon, M.; Trama, R.; Blache, Y.; Hautier, C. Performance Factors in a Mountain Ultramarathon. Int. J. Sports Med. 2017, 38, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.-B.; Samozino, P.; Horvais, N.; Millet, G.Y. Biomechanics and Physiology of Uphill and Downhill Running. Sports Med. 2017, 47, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Ruiz, J.R.; Lucia, A. The Two-Hour Marathon: Who and When? J. Appl. Physiol. 2011, 110, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Lemire, M.; Hureau, T.J.; Favret, F.; Geny, B.; Kouassi, B.Y.L.; Boukhari, M.; Lonsdorfer, E.; Remetter, R.; Dufour, S.P. Physiological Factors Determining Downhill vs. Uphill Running Endurance Performance. J. Sci. Med. Sport 2021, 24, 85–91. [Google Scholar] [CrossRef]
- Bascuas, P.J.; Bataller-Cervero, A.V.; Gutierrez, H.; Berzosa, C. Modifications of Viscoelastic Properties and Physiological Parameters after Performing Uphill and Downhill Running Trials. J. Sports Med. Phys. Fitness 2021, 61, 625–635. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors Affecting Running Economy in Trained Distance Runners. Sports Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Ehrström, S.; Tartaruga, M.P.; Easthope, C.S.; Brisswalter, J.; Morin, J.-B.; Vercruyssen, F. Short Trail Running Race: Beyond the Classic Model for Endurance Running Performance. Med. Sci. Sports Exerc. 2018, 50, 580–588. [Google Scholar] [CrossRef]
- Bascuas, P.J.; Gutiérrez, H.; Piedrafita, E.; Rabal-Pelay, J.; Berzosa, C.; Bataller-Cervero, A.V. Running Economy in the Vertical Kilometer. Sensors 2023, 23, 9349. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.; Moreau, K.; Nokoff, N.; Stachenfeld, N.S.; Bermon, S. Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023, 55, 2328–2360. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef]
- Tiller, N.B.; Illidi, C.R. Sex Differences in Ultramarathon Performance in Races with Comparable Numbers of Males and Females. Appl. Physiol. Nutr. Metab. 2024, 49, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S. Muscle Oxygenation Unlocks the Secrets of Physiological Responses to Exercise: Time to Exploit It in the Training Monitoring. Front. Sports Act. Living 2022, 4, 864825. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J. Understanding near Infrared Spectroscopy and Its Application to Skeletal Muscle Research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Saghiv, M.S.; Sagiv, M.S. Introduction to Exercise Physiology. In Basic Exercise Physiology: Clinical and Laboratory Perspectives; Saghiv, M.S., Sagiv, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–31. ISBN 978-3-030-48806-2. [Google Scholar]
- Born, D.-P.; Stöggl, T.; Swarén, M.; Björklund, G. Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. Int. J. Sports Physiol. Perform. 2017, 12, 440–447. [Google Scholar] [CrossRef]
- Lin, A.J.; Ponticorvo, A.; Konecky, S.D.; Cui, H.; Rice, T.B.; Choi, B.; Durkin, A.J.; Tromberg, B.J. Visible Spatial Frequency Domain Imaging with a Digital Light Microprojector. J. Biomed. Opt. 2013, 18, 096007. [Google Scholar] [CrossRef]
- Zelenkova, I.E.; Zotkin, S.V.; Korneev, P.V.; Koprov, S.V.; Grushin, A.A. Relationship between Total Hemoglobin Mass and Competitive Performance in Endurance Athletes. J. Sports Med. Phys. Fitness 2019, 59, 352–356. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Molgat-Seon, Y. Sex, Gender and the Pulmonary Physiology of Exercise. Eur. Respir. Rev. 2022, 31, 210074. [Google Scholar] [CrossRef]
- Besson, T.; Macchi, R.; Rossi, J.; Morio, C.Y.M.; Kunimasa, Y.; Nicol, C.; Vercruyssen, F.; Millet, G.Y. Sex Differences in Endurance Running. Sports Med. 2022, 52, 1235–1257. [Google Scholar] [CrossRef]
- Guenette, J.A.; Querido, J.S.; Eves, N.D.; Chua, R.; Sheel, A.W. Sex Differences in the Resistive and Elastic Work of Breathing during Exercise in Endurance-Trained Athletes. Am. J. Physiol. 2009, 297, R166–R175. [Google Scholar] [CrossRef]
- Salazar-Martínez, E.; de Matos, T.R.; Arrans, P.; Santalla, A.; Orellana, J.N. Ventilatory Efficiency Response Is Unaffected by Fitness Level, Ergometer Type, Age or Body Mass Index in Male Athletes. Biol. Sport 2018, 35, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Carvajal, A.; Calderón, F.J.; Alfonso, A.; Chicharro, J.L. Breathing Pattern in Highly Competitive Cyclists during Incremental Exercise. Eur. J. Appl. Physiol. 1999, 79, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Lucía, A.; Pardo, J.; Durántez, A.; Hoyos, J.; Chicharro, J.L. Physiological Differences between Professional and Elite Road Cyclists. Int. J. Sports Med. 1998, 19, 342–348. [Google Scholar] [CrossRef]
- McClaran, S.R.; Harms, C.A.; Pegelow, D.F.; Dempsey, J.A. Smaller Lungs in Women Affect Exercise Hyperpnea. J. Appl. Physiol. 1998, 84, 1872–1881. [Google Scholar] [CrossRef]
- Powers, S.K.; Dodd, S.; Lawler, J.; Landry, G.; Kirtley, M.; McKnight, T.; Grinton, S. Incidence of Exercise Induced Hypoxemia in Elite Endurance Athletes at Sea Level. Eur. J. Appl. Physiol. 1988, 58, 298–302. [Google Scholar] [CrossRef]
- Bussotti, M.; Magrì, D.; Previtali, E.; Farina, S.; Torri, A.; Matturri, M.; Agostoni, P. End-Tidal Pressure of CO2 and Exercise Performance in Healthy Subjects. Eur. J. Appl. Physiol. 2008, 103, 727–732. [Google Scholar] [CrossRef]
- Mazaheri, R.; Schmied, C.; Niederseer, D.; Guazzi, M. Cardiopulmonary Exercise Test Parameters in Athletic Population: A Review. J. Clin. Med. 2021, 10, 5073. [Google Scholar] [CrossRef]
- St Pierre, S.R.; Peirlinck, M.; Kuhl, E. Sex Matters: A Comprehensive Comparison of Female and Male Hearts. Front. Physiol. 2022, 13, 831179. [Google Scholar] [CrossRef]
- Solleiro Pons, M.; Bernert, L.; Hume, E.; Hughes, L.; Williams, Z.J.; Burnley, M.; Ansdell, P. No Sex Differences in Oxygen Uptake or Extraction Kinetics in the Moderate or Heavy Exercise Intensity Domains. J. Appl. Physiol. 2024, 136, 472–481. [Google Scholar] [CrossRef]
- Harms, C.A.; Wetter, T.J.; St Croix, C.M.; Pegelow, D.F.; Dempsey, J.A. Effects of Respiratory Muscle Work on Exercise Performance. J. Appl. Physiol. 2000, 89, 131–138. [Google Scholar] [CrossRef]
- Welch, J.F.; Archiza, B.; Guenette, J.A.; West, C.R.; Sheel, A.W. Effect of Diaphragm Fatigue on Subsequent Exercise Tolerance in Healthy Men and Women. J. Appl. Physiol. 2018, 125, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Canestro, C.; Pentz, B.; Sehgal, A.; Montero, D. Differences in Cardiac Output and Aerobic Capacity Between Sexes Are Explained by Blood Volume and Oxygen Carrying Capacity. Front. Physiol. 2022, 13, 747903. [Google Scholar] [CrossRef] [PubMed]
- Paavolainen, L.; Nummela, A.; Rusko, H. Muscle Power Factors and VO2max as Determinants of Horizontal and Uphill Running Performance. Scand. J. Med. Sci. Sports 2000, 10, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Glaab, T.; Taube, C. Physiological Principles of Cardiopulmonary Exercise Testing. Sports Inj. Med. 2022, 6, 189. [Google Scholar]
- Furrer, R.; Hawley, J.A.; Handschin, C. The Molecular Athlete: Exercise Physiology from Mechanisms to Medals. Physiol. Rev. 2023, 103, 1693–1787. [Google Scholar] [CrossRef]
- Levine, B.D. VO2max: What Do We Know, and What Do We Still Need to Know? J. Physiol. 2008, 586, 25–34. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70. [Google Scholar] [CrossRef]
- Hermand, E.; Lhuissier, F.J.; Richalet, J.-P. Effect of Dead Space on Breathing Stability at Exercise in Hypoxia. Respir. Physiol. Neurobiol. 2017, 246, 26–32. [Google Scholar] [CrossRef]
- Salazar-Martínez, E.; Gatterer, H.; Burtscher, M.; Naranjo Orellana, J.; Santalla, A. Influence of Inspiratory Muscle Training on Ventilatory Efficiency and Cycling Performance in Normoxia and Hypoxia. Front. Physiol. 2017, 8, 133. [Google Scholar] [CrossRef]
- Hawley, J.A.; Lundby, C.; Cotter, J.D.; Burke, L.M. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell. Metab. 2018, 27, 962–976. [Google Scholar] [CrossRef]
- Lucía, A.; Hoyos, J.; Pardo, J.; Chicharro, J.L. Metabolic and Neuromuscular Adaptations to Endurance Training in Professional Cyclists: A Longitudinal Study. Jpn. J. Physiol. 2000, 50, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, A.; Nordlund Ekblom, M.M.; Thorstensson, A. Central Fatigue Affects Plantar Flexor Strength after Prolonged Running. Scand. J. Med. Sci. Sports 2008, 18, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Power–Duration Relationship: Physiology, Fatigue, and the Limits of Human Performance. Eur. J. Sport Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.L.R.; Giovanelli, N.; Kram, R. The Metabolic Costs of Walking and Running up a 30-Degree Incline: Implications for Vertical Kilometer Foot Races. Eur. J. Appl. Physiol. 2017, 117, 1869–1876. [Google Scholar] [CrossRef]
Men (n = 10) | Women (n = 5) | |
---|---|---|
Age (years) | 29 ± 2 | 28 ± 3 |
Height (cm) | 174.70 ± 1.47 | 163.00 ± 0.95 |
Weight (kg) | 69.50 ± 1.95 | 54.40 ± 1.63 |
BMI (kg/m2) | 22.80 ± 0.60 | 20.40 ± 0.44 |
Training frequency (times/week) | 4.66 ± 0.23 | 4.80 ± 0.49 |
Training volume (min/session) | 54.40 ± 1.76 | 61.00 ± 8.42 |
Variable | Sex | Mean ± SD | Sig | Effect Size (gANCOVA) | Statistical Power |
---|---|---|---|---|---|
VE peak [L/minute] | Women (n = 5) Men (n = 10) | 101.70 ± 14.60 143.00 ± 12.80 | <0.001 | −4.04 | 1.00 |
VE mean [L/minute] | Women (n = 5) Men (n = 10) | 87.20 ± 13.40 117.20 ± 13.60 | <0.001 | −3.31 | 0.97 |
TV peak [L] | Women (n = 5) Men (n = 10) | 2.08 ± 0.21 2.94 ± 0.33 | 0.001 | −3.91 | 0.98 |
TV mean [L] | Women (n = 5) Men (n = 10) | 1.61 ± 0.18 2.32 ± 0.24 | <0.001 | −4.10 | 0.99 |
ET/IT mean | Women (n = 5) Men (n = 10) | 1.03 ± 0.06 1.10 ± 0.06 | 0.034 | −2.86 | 0.59 |
TV/IT peak | Women (n = 5) Men (n = 10) | 3.45 ± 0.51 5.09 ± 0.49 | <0.001 | −4.27 | 1.00 |
TV/IT mean | Women (n = 5) Men (n = 10) | 2.96 ± 0.45 4.11 ± 0.41 | <0.001 | −3.88 | 0.99 |
PETCO2 peak [mmHg] | Women (n = 5) Men (n = 10) | 38.8 ± 1.30 35.8 ± 2.66 | 0.043 | 2.71 | 0.55 |
HR peak [bpm] | Women (n = 5) Men (n = 10) | 187.00 ± 12.40 172.60 ± 7.38 | 0.012 | 3.45 | 0.78 |
HR mean [bpm] | Women (n = 5) Men (n = 10) | 174.40 ± 8.70 165.50 ± 5.19 | 0.015 | 3.40 | 0.75 |
VO2/HR peak [mL/beat] | Women (n = 5) Men (n = 10) | 20.30 ± 5.58 27.20 ± 5.04 | 0.032 | −3.15 | 0.61 |
VO2/HR mean [mL/beat] | Women (n = 5) Men (n = 10) | 15.40 ± 2.25 22.80 ± 2.54 | <0.001 | −3.96 | 0.99 |
THb peak [g/dL] | Women (n = 5) Men (n = 10) | 12.00 ± 0.26 12.70 ± 0.41 | 0.010 | −3.74 | 0.81 |
THb mean [g/dL] | Women (n = 5) Men (n = 10) | 11.40 ± 0.76 12.50 ± 0.46 | 0.010 | −3.41 | 0.81 |
THb CV [%] | Women (n = 5) Men (n = 10) | 0.010 ± 0.005 0.006 ± 0.003 | 0.024 | 3.83 | 0.67 |
Variable | Quartile | Mean ± SD | Sig | Effect Size (Hedges’ g) | Statistical Power |
---|---|---|---|---|---|
VK final time [minutes] | Q1 (n = 5) Q2–Q4 (n = 10) | 46.08 ± 1.71 58.92 ± 5.91 | <0.001 | −2.41 | 1.00 |
Velocity min [m/s] | Q1 (n = 5) Q2–Q4 (n = 10) | 1.80 ± 1.22 1.32 ± 0.37 | 0.009 | 1.41 | 0.18 |
Velocity mean [m/s] | Q1 (n = 5) Q2–Q4 (n = 10) | 5.91 ± 0.40 4.77 ± 0.47 | <0.001 | 2.36 | 0.99 |
VO2/kg peak [mL/kg/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 71.50 ± 3.23 58.70 ± 3.97 | <0.001 | 3.21 | 1.00 |
VO2/kg mean [mL/kg/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 62.50 ± 4.31 50.70 ± 2.62 | <0.001 | 3.35 | 0.99 |
VCO2/kg peak [mL/kg/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 66.70 ± 7.73 53.00 ± 2.75 | <0.001 | 2.58 | 0.84 |
VCO2/kg mean [mL/kg/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 51.90 ± 3.91 40.90 ± 3.21 | <0.001 | 2.98 | 0.99 |
VE peak [L/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 142.70 ± 15.30 120.30 ± 25.30 | 0.05 | 0.93 | 0.46 |
VE mean [L/minute] | Q1 (n = 5) Q2–Q4 (n = 10) | 119.10 ± 14.50 99.50 ± 19.50 | 0.038 | 1.01 | 0.51 |
VD/TV mean | Q1 (n = 5) Q2–Q4 (n = 10) | 0.23 ± 0.01 0.26 ± 0.03 | 0.045 | −0.96 | 0.75 |
TotalT min [seconds] | Q1 (n = 5) Q2–Q4 (n = 10) | 0.79 ± 0.23 0.96 ± 0.11 | 0.038 | −1.01 | 0.25 |
TotalT mean [seconds] | Q1 (n = 5) Q2–Q4 (n = 10) | 0.99 ± 0.31 1.19 ± 0.11 | 0.049 | −0.94 | 0.20 |
ET/IT peak | Q1 (n = 5) Q2–Q4 (n = 10) | 1.24 ± 0.10 1.43 ± 0.11 | 0.004 | −1.64 | 0.84 |
IT/TotalT min | Q1 (n = 5) Q2–Q4 (n = 10) | 0.45 ± 0.02 0.42 ± 0.02 | 0.025 | 1.14 | 0.72 |
FECO2 peak [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 4.73 ± 0.40 4.32 ± 0.27 | 0.021 | 1.19 | 0.41 |
FECO2 mean [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 3.81 ± 0.32 3.51 ± 0.25 | 0.037 | 1.02 | 0.35 |
SmO2 min [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 9.62 ± 3.37 24.70 ± 13.10 | 0.003 | −1.23 | 0.87 |
SmO2 mean [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 28.30 ± 5.38 46.20 ± 15.4 | 0.004 | −1.23 | 0.86 |
VE/VCO2 mean | Q1 (n = 5) Q2–Q4 (n = 10) | 34.40 ± 3.05 37.70 ± 2.72 | 0.028 | −1.10 | 0.43 |
VO2/HR CV [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 16.30 ± 1.71 12.10 ± 4.62 | 0.027 | 0.93 | 0.23 |
SmO2 CV [%] | Q1 (n = 5) Q2–Q4 (n = 10) | 41.20 ± 10.20 19.20 ± 12.50 | 0.005 | 1.71 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bascuas, P.J.; Gutiérrez, H.; Piedrafita, E.; Bataller-Cervero, A.V.; Berzosa, C. Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands. J. Funct. Morphol. Kinesiol. 2024, 9, 230. https://doi.org/10.3390/jfmk9040230
Bascuas PJ, Gutiérrez H, Piedrafita E, Bataller-Cervero AV, Berzosa C. Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands. Journal of Functional Morphology and Kinesiology. 2024; 9(4):230. https://doi.org/10.3390/jfmk9040230
Chicago/Turabian StyleBascuas, Pablo Jesús, Héctor Gutiérrez, Eduardo Piedrafita, Ana Vanessa Bataller-Cervero, and César Berzosa. 2024. "Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands" Journal of Functional Morphology and Kinesiology 9, no. 4: 230. https://doi.org/10.3390/jfmk9040230
APA StyleBascuas, P. J., Gutiérrez, H., Piedrafita, E., Bataller-Cervero, A. V., & Berzosa, C. (2024). Study of Physiological Adaptations in Vertical Kilometer Runners: Focus on Cardiorespiratory and Local Muscle Demands. Journal of Functional Morphology and Kinesiology, 9(4), 230. https://doi.org/10.3390/jfmk9040230