Nonlinear Dynamics Analysis of Handgrip Strength Using the Poincaré Plot Method Through Video Processing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Settings
2.3. Study Size
2.4. Data Sources/Measurement
2.5. Variables and Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koźlenia, D.; Popowczak, M.; Szafraniec, R.; Alvarez, C.; Domaradzki, J. Changes in Muscle Mass and Strength in Adolescents Following High-Intensity Functional Training with Bodyweight Resistance Exercises in Physical Education Lessons. J. Clin. Med. 2024, 13, 3400. [Google Scholar] [CrossRef] [PubMed]
- Savas, S.; Kilavuz, A.; Kayhan Koçak, F.Ö.; Cavdar, S. Comparison of Grip Strength Measurements by Widely Used Three Dynamometers in Outpatients Aged 60 Years and Over. J. Clin. Med. 2023, 12, 4260. [Google Scholar] [CrossRef] [PubMed]
- Iconaru, E.I.; Ciucurel, M.M.; Georgescu, L.; Ciucurel, C. Hand grip strength as a physical biomarker of aging from the perspective of a Fibonacci mathematical modeling. BMC Geriatr. 2018, 18, 296. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Misra, A.; Vaish, A.; Ursino, N.; D’Ambrosi, R. Hand grip strength as a proposed new vital sign of health: A narrative review of evidences. J. Health Popul. Nutr. 2024, 43, 7. [Google Scholar] [CrossRef]
- Iconaru, E.I.; Ciucurel, C. Hand grip strength variability during serial testing as an entropic biomarker of aging: A Poincaré plot analysis. BMC Geriatr. 2020, 20, 12. [Google Scholar] [CrossRef]
- Butuc, I.; Mirestean, C.; Iancu, D. A nonlinear model in the dynamics of tumorimmune system combined with radiotherapy. UPB Sci. Bull. Ser. A 2019, 81, 311–322. [Google Scholar]
- Khandoker, A.H.; Palaniswami, M.; Begg, R.K. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J. Neuroeng. Rehabil. 2008, 5, 4. [Google Scholar] [CrossRef]
- Kimura, T.; Shimamura, S.; Sakaya, H.; Hayashi, T.; Umemoto, A.; Sakai, K.; Yamasaki, M.; Hasegawa, T.; Shimada, T. Evaluating the indicators of a heart rate variability analysis in dogs using Poincaré plots. Vet. Med. 2024, 69, 42–51. [Google Scholar] [CrossRef]
- Liao, T.E.; Lo, L.W.; Lin, Y.J.; Chang, S.L.; Hu, Y.F.; Chung, F.P.; Chao, T.F.; Liao, J.N.; Yang, H.W.; Lo, M.T.; et al. Nonlinear Heart Rate Dynamics Before and After Paroxysmal Atrial Fibrillation Events. Acta Cardiol. Sin. 2022, 38, 594–600. [Google Scholar] [CrossRef]
- Jaworski, D.; Park, E.J. Nonlinear Heart Rate Variability Analysis for Sleep Stage Classification Using Integration of Ballistocardiogram and Apple Watch. Nat. Sci. Sleep. 2024, 16, 1075–1090. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1873–H1886. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.; Halkiadakis, Y.; Morgan, K.D. Poincaré analysis detects pathological limb loading rate variability in post-anterior cruciate ligament reconstruction individuals. Gait Posture. 2024, 110, 17–22. [Google Scholar] [CrossRef]
- Wong, D.C.; Williams, S. Artificial intelligence analysis of videos to augment clinical assessment: An overview. Neural. Regen. Res. 2024, 19, 717–718. [Google Scholar] [CrossRef]
- Chen, C.H.; Hu, Y.H.; Yen, T.Y.; Radwin, R.G. Automated video exposure assessment of repetitive hand activity level for a load transfer task. Hum. Factors 2013, 55, 298–308. [Google Scholar] [CrossRef]
- Gotthelf, M.; Townsend, D.; Durfee, W. A video game based hand grip system for measuring muscle force in children. J. Neuroeng. Rehabil. 2021, 18, 113. [Google Scholar] [CrossRef] [PubMed]
- Incel, N.; Ceceli, E.; Durukan, P.; Erdem, H.; Yorgancioglu, Z. Grip strength: Effect of hand dominance. Singapore Med. J. 2002, 43, 234–237. [Google Scholar] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Sousa-Santos, A.R.; Amaral, T.F. Differences in handgrip strength protocols to identify sarcopenia and frailty—A systematic review. BMC Geriatr. 2017, 17, 238. [Google Scholar] [CrossRef] [PubMed]
- Damsted, C.; Nielsen, R.O.; Larsen, L.H. Reliability of video-based quantification of the knee- and hip angle at foot strike during running. Int. J. Sports Phys. Ther. 2015, 10, 147–154. [Google Scholar]
- Fernández-González, P.; Koutsou, A.; Cuesta-Gómez, A.; Carratalá-Tejada, M.; Miangolarra-Page, J.C.; Molina-Rueda, F. Reliability of Kinovea® Software and Agreement with a Three-Dimensional Motion System for Gait Analysis in Healthy Subjects. Sensors 2020, 20, 3154. [Google Scholar] [CrossRef]
- Crenier, L. Poincaré plot quantification for assessing glucose variability from continuous glucose monitoring systems and a new risk marker for hypoglycemia: Application to type 1 diabetes patients switching to continuous subcutaneous insulin infusion. Diabetes Technol. Ther. 2014, 16, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Wesseling, K.H.; Wykretowicz, A.; Wysock, H. Correlations between Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J. Physiol. Sci. 2007, 57, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Golińska, A.K. Poincaré plots in analysis of selected biomedical signals. Stud. Logic Gramm. Rhetor. 2013, 35, 117–127. [Google Scholar] [CrossRef]
- Iconaru, E.I.; Ciucurel, M.M.; Georgescu, L.; Tudor, M.; Ciucurel, C. The Applicability of the Poincaré Plot in the Analysis of Variability of Reaction Time during Serial Testing. Int. J. Environ. Res. Public Health 2021, 18, 3706. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.; Jacono, F.J.; Park, S.; Jamasebi, R.; Thungtong, A.; Loparo, K.A.; Dick, T.E. A method for analyzing temporal patterns of variability of a time series from Poincare plots. J. Appl. Physiol. 2012, 113, 297–306. [Google Scholar] [CrossRef]
- Iconaru, E.I.; Ciucurel, M.M.; Tudor, M.; Ciucurel, C. Nonlinear Dynamics of Reaction Time and Time Estimation during Repetitive Test. Int. J. Environ. Res. Public Health 2022, 19, 1818. [Google Scholar] [CrossRef]
- Georgieva-Tsaneva, G.; Gospodinova, E.; Cheshmedzhiev, K. Examination of Cardiac Activity with ECG Monitoring Using Heart Rate Variability Methods. Diagnostics 2024, 14, 926. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0, Released 2019; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Hamerská, L.; Matěcha, T.; Tóthová, M.; Rusek, M. Between Symbols and Particles: Investigating the Complexity of Learning Chemical Equations. Educ. Sci. 2024, 14, 570. [Google Scholar] [CrossRef]
- Massy-Westropp, N.M.; Gill, T.K.; Taylor, A.W.; Bohannon, R.W.; Hill, C.T. Hand grip strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed]
- Vuoksimaa, E.; Koskenvuo, M.; Rose, R.J.; Kaprio, J. Origins of handedness: A nationwide study of 30,161 adults. Neuropsychologia 2009, 47, 1294–1301. [Google Scholar] [CrossRef]
- Myles, L.; Massy-Westropp, N.; Barnett, F. The how and why of handgrip strength assessment. Br. J. Occup. Ther. 2024, 87, 321–328. [Google Scholar] [CrossRef]
- McGrath, R.; Tomkinson, G.R.; Clark, B.C.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Jurivich, D.A.; Hackney, K.J. Assessing Additional Characteristics of Muscle Function With Digital Handgrip Dynamometry and Accelerometry: Framework for a Novel Handgrip Strength Protocol. J. Am. Med. Dir. Assoc. 2021, 22, 2313–2318. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Garufi, G.; Gugliandolo, G.; De Marchis, C.; Collufio, D.; Cardali, S.M.; Donato, N. Handgrip Strength in Health Applications: A Review of the Measurement Methodologies and Influencing Factors. Sensors 2024, 24, 5100. [Google Scholar] [CrossRef] [PubMed]
- Silva-Santos, T.; Guerra, R.S.; Valdiviesso, R.; Amaral, T.F. Hand Grip Force-Time Curve Indicators Evaluated by Dynamometer: A Systematic Review. Nutrients 2024, 16, 1951. [Google Scholar] [CrossRef] [PubMed]
- Satti, R.; Abid, N.U.; Bottaro, M.; De Rui, M.; Garrido, M.; Raoufy, M.R.; Montagnese, S.; Mani, A.R. The Application of the Extended Poincaré Plot in the Analysis of Physiological Variabilities. Front. Physiol. 2019, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, A.; Ebrahimi, M. The entropy of countable dynamical systems. UPB Sci. Bull. Ser. A 2014, 76, 107–114. [Google Scholar]
- Chen, X.; Xu, G.; Du, C.; Zhang, S.; Zhang, X.; Teng, Z. Poincaré Plot Nonextensive Distribution Entropy: A New Method for Electroencephalography (EEG) Time Series. Sensors 2022, 22, 6283. [Google Scholar] [CrossRef]
- Bochicchio, G.; Ferrari, L.; Bottari, A.; Lucertini, F.; Cavedon, V.; Milanese, C.; Pogliaghi, S. Loaded 5 Sit-to-Stand Test to Determine the Force–Velocity Relationship in Older Adults: A Validation Study. Appl. Sci. 2023, 13, 7837. [Google Scholar] [CrossRef]
- Dideriksen, J.L.; Negro, F.; Enoka, R.M.; Farina, D. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. J. Neurophysiol. 2012, 107, 3357–3369. [Google Scholar] [CrossRef] [PubMed]
- Zaccagni, L.; Toselli, S.; Bramanti, B.; Gualdi-Russo, E.; Mongillo, J.; Rinaldo, N. Handgrip Strength in Young Adults: Association with Anthropometric Variables and Laterality. Int. J. Environ. Res. Public Health 2020, 17, 4273. [Google Scholar] [CrossRef]
- Philip, B.A.; Frey, S.H. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing. Neuropsychologia 2016, 87, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Alkurdi, Z.D.; Dweiri, Y.M. A biomechanical assessment of isometric handgrip force and fatigue at different anatomical positions. J. Appl. Biomech. 2010, 26, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, B.; Sainburg, R.; Sharp, S.; Philip, B.A. Roles of Handedness and Hemispheric Lateralization: Implications for Rehabilitation of the Central and Peripheral Nervous Systems: A Rapid Review. Am. J. Occup. Ther. 2024, 78, 7802180120. [Google Scholar] [CrossRef]
- Lima, F.M.; Fernandes, L.F.R.M.; Bertoncello, D. Tracking upper limbs fatigue by means of electronic dynamometry. Motriz 2015, 21, 214–221. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef]
- Enoka, R.M.; Fuglevand, A.J. Motor unit physiology: Some unresolved issues. Muscle Nerve 2001, 24, 4–17. [Google Scholar] [CrossRef]
Variable | Age (Years) | mHGS DH (kgf) | vHGS DH (kgf) | mHGS NDH (kgf) | vHGS NDH (kgf) | FT DH % | FT NDH % |
---|---|---|---|---|---|---|---|
mean | 21.6 | 34.25 | 35.36 | 32.53 | 33.47 | 39.65 | 39.69 |
SD | 1.3 | 9.53 | 9.26 | 11.11 | 10.83 | 10.25 | 16.88 |
minimum | 20 | 22.00 | 23.43 | 16.50 | 18.21 | 25.84 | 42.52 |
maximum | 24 | 64.50 | 65.24 | 61.50 | 62.86 | 16.90 | 10.28 |
Parameter | DH Mean ± SD | NDH Mean ± SD | U | Z | p | r |
---|---|---|---|---|---|---|
vHGS | 35.36 ± 9.26 | 33.47 ± 10.83 | 371 | −1.17 | 0.24 | −0.21 |
HGS | 26.11 ± 7.56 | 24.90 ± 9.11 | 385 | −0.96 | 0.34 | −0.18 |
SD1 | 0.24 ± 0.08 | 0.24 ± 0.08 | 434.5 | −0.23 | 0.82 | −0.04 |
SD2 | 7.01 ± 2.45 | 6.28 ± 2.83 | 343 | −1.58 | 0.11 | −0.29 |
SD1/SD2 | 0.04 ± 0.01 | 0.04 ± 0.02 | 406.5 | −0.66 | 0.51 | −0.12 |
AFE | 5.55 ± 3.57 | 5.07 ± 3.95 | 364 | −1.27 | 0.20 | −0.23 |
AV | 5.53 ± 15.32 | 2.52 ± 1.06 | 355.5 | −1.40 | 0.16 | −0.26 |
SD1 | 9.01 ± 5.65 | 8.67 ± 5.33 | 414.5 | −0.53 | 0.6 | −0.01 |
SD2 | 43.97 ± 13.57 | 43.95 ± 14.57 | 444.5 | −0.08 | 0.94 | −0.01 |
SD1/SD2 | 0.20 ± 0.09 | 0.19 ± 0.07 | 428.5 | −0.32 | 0.75 | −0.05 |
AFE | 1408.87 ± 1360.91 | 1402.87 ± 1433.61 | 423 | −0.40 | 0.69 | −0.07 |
Variable | vHGS | HGS | SD1 | SD2 | SD1/SD2 | AFE | FT | |
---|---|---|---|---|---|---|---|---|
vHGS | τ | 1 | 0.71 * | 0.28 * | 0.56 * | −0.23 | 0.64 * | −0.01 |
p | 0.001 | 0.035 | 0.000 | 0.103 | 0.001 | 0.97 | ||
HGS | τ | 0.71 * | 1 | 0.25 | 0.43 * | −0.16 | 0.52 * | −0.21 |
p | 0.001 | 0.055 | 0.001 | 0.263 | 0.001 | 0.11 |
Variable | vHGS | HGS | SD1 | SD2 | SD1/SD2 | AFE | FT | |
---|---|---|---|---|---|---|---|---|
vHGS | τ | 1 | 0.76 * | 0.52 * | 0.63 * | −0.18 | 0.76 * | 0.1 |
p | 0.001 | 0.001 | 0.001 | 0.196 | 0.001 | 0.422 | ||
HGS | τ | 0.76 * | 1 | 0.59 * | 0.41 * | 0.03 | 0.6 * | −0.06 |
p | 0.001 | 0.001 | 0.001 | 0.810 | 0.001 | 0.643 |
Variable | vHGS | AV | SD1 | SD2 | SD1/SD2 | AFE | FT | |
---|---|---|---|---|---|---|---|---|
vHGS | τ | 1 | 0.63 * | 0.22 | 0.25 * | 0.15 | 0.25 * | −0.01 |
p | 0.001 | 0.087 | 0.050 | 0.267 | 0.050 | 0.972 | ||
AV | τ | 0.63 * | 1 | 0.15 | 0.17 | 0.13 | 0.14 | −0.3 * |
p | 0.001 | 0.239 | 0.187 | 0.316 | 0.284 | 0.019 |
Variable | vHGS | AV | SD1 | SD2 | SD1/SD2 | AFE | FT | |
---|---|---|---|---|---|---|---|---|
vHGS | τ | 1 | 0.44 * | 0.56 * | 0.53 * | 0.36 | 0.57 * | 0.1 |
p | 0.001 | 0.001 | 0.001 | 0.006 | 0.001 | 0.422 | ||
AV | τ | 0.44 * | 1 | 0.31 * | 0.33 * | 0.17 | 0.33 * | −0.44 * |
p | 0.001 | 0.017 | 0.010 | 0.197 | 0.010 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciucurel, C.; Iconaru, E.I. Nonlinear Dynamics Analysis of Handgrip Strength Using the Poincaré Plot Method Through Video Processing Techniques. J. Funct. Morphol. Kinesiol. 2024, 9, 234. https://doi.org/10.3390/jfmk9040234
Ciucurel C, Iconaru EI. Nonlinear Dynamics Analysis of Handgrip Strength Using the Poincaré Plot Method Through Video Processing Techniques. Journal of Functional Morphology and Kinesiology. 2024; 9(4):234. https://doi.org/10.3390/jfmk9040234
Chicago/Turabian StyleCiucurel, Constantin, and Elena Ioana Iconaru. 2024. "Nonlinear Dynamics Analysis of Handgrip Strength Using the Poincaré Plot Method Through Video Processing Techniques" Journal of Functional Morphology and Kinesiology 9, no. 4: 234. https://doi.org/10.3390/jfmk9040234
APA StyleCiucurel, C., & Iconaru, E. I. (2024). Nonlinear Dynamics Analysis of Handgrip Strength Using the Poincaré Plot Method Through Video Processing Techniques. Journal of Functional Morphology and Kinesiology, 9(4), 234. https://doi.org/10.3390/jfmk9040234