Tetrahedron-Based Porous Scaffold Design for 3D Printing
Abstract
:1. Introduction
2. Triply Periodic Minimal Surfaces
- (1)
- Quadrilateral and hexahedral meshes are usually less frequently and efficiently used than triangular and tedrahedral meshes in various image-processing areas.
- (2)
- More importantly, a hexahedron will introduce a distortion issue when deformed in 3D which is not seen in a tetrahedron.
3. Tetrahedral Implicit Surface Modeling
3.1. Mathematical Description of Tetrahedral Implicit Surface
3.2. Continuity Analysis of Tetrahedral Implicit Surface
3.3. Porous Structure Generation from Surface Moldes
4. Results and Discussion
5. Conclusions and Future Work
- (1)
- Generation of the TIS surface could avoid the restriction of modeling based on a regular unit domain, such as the regular hexahedron in TPMS. Even in the deformed tetrahedron, there can still be the creation of a characteristic tetrahedral surface, which can guarantee continuity between adjacent TIS surfaces.
- (2)
- Different from the TPMS method that needs to parametrize tissue surfaces into hexahedral meshes, it is more convenient to tetrahedralize the triangular surface mesh as in the proposed TIS method. Without the special mapping procedure, the entire process of generating pores is also simplified.
- (3)
- The strong interconnectivity and tetrahedron-based modeling grants the TIS more flexibility and creativity for complicated shape modeling.
Author Contributions
Funding
Conflicts of Interest
References
- Mikos, A.G.; Sarakinos, G.; Leite, S.M.; Vacanti, J.P.; Langer, R. Laminated three dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993, 14, 323–330. [Google Scholar] [CrossRef]
- Mooney, D.J.; Baldwin, D.F.; Suh, N.P.; Vacanti, J.P.; Langer, R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996, 17, 1417–1422. [Google Scholar] [CrossRef]
- Guan, J.; Fujimoto, K.L.; Sacks, M.S.; Wagner, W.R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005, 26, 3961–3971. [Google Scholar] [CrossRef] [Green Version]
- Van de Witte, P.; Dijkstra, P.J.; van den Berg, J.W.A.; Feijen, J. Phase behavior of polylactides in solvent–nonsolvent mixtures. J. Polym. Sci. 1996, 34, 2553–2568. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J. R. Soc. Interface 2009, 6, S341–S348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sill, T.J.; von Recum, H.A. Electrospinning: Applications in drug delivery and tissue engineering. J. R. Soc. Interface 2008, 29, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Duarte, A.R.C.; Faria, S.; Marques, A.P.; Reis, R.L.; Neves, N.M. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. J. R. Soc. Interface 2010, 31, 5875–5885. [Google Scholar] [CrossRef] [Green Version]
- Knackstedt, M.A.; Arns, C.H.; Senden, T.J.; Gross, K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials 2006, 27, 2776–2786. [Google Scholar] [CrossRef] [PubMed]
- Tampieri, A.; Sprio, S.; Ruffini, A.; Celotti, G.; Lesci, I.G.; Roveri, N. From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Chem. 2009, 19, 4973–4980. [Google Scholar] [CrossRef]
- Lo, H.; Ponticiello, M.S.; Leong, K.W. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng. 1995, 1, 15–28. [Google Scholar] [CrossRef]
- Melchels, F.P.W.; Domingos, M.A.N.; Klein, T.J.; Malda, J.; Bartolo, P.J.; Hutmacher, D.W. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012, 37, 1079–1104. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, P.J.S.; Almeida, H.; Laoui, T. Rapid prototyping and manufacturing for tissue engineering scaffolds. Int. J. Comput. Appl. Technol. 2009, 36, 1–9. [Google Scholar] [CrossRef]
- Peltola, S.M.; Melchels, F.P.; Kellomäki, M. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 2008, 40, 268–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannitelli, S.; Accoto, D.; Trombetta, M.; Rainer, A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014, 10, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Wang, S.; Dadsetan, M.; Yaszemski, M.J.; Lu, L. Enhanced Cell Ingrowth and Proliferation through Three-Dimensional Nanocomposite Scaffolds with Controlled Pore Structures. Biofabrication 2010, 11, 682–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, B.; Cheung, W.L.; Wang, M. Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 2011, 3, 015001. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.K.; Yeung, Y.C.; Yu, K.M. Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyp. J. 2006, 12, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Starly, B.; Nam, J.; Darling, A. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput.-Aided Des. 2005, 37, 1097–1114. [Google Scholar] [CrossRef]
- Bucklen, B.S.; Wettergreen, W.A.; Yuksel, E.; Liebschner, M.A.K. Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys. Prototyp. 2008, 3, 13–23. [Google Scholar] [CrossRef]
- Hollister, S.J.; Levy, R.A.; Chu, T.M.; Halloran, J.W.; Feinberg, S.E. An Image-Based Approach for Designing and Manufacturing Craniofacial Scaffolds. Int. J. Oral Maxillofac. Surg. 2000, 29, 67–71. [Google Scholar] [CrossRef]
- Smith, M.H.; Flanagan, C.L.; Kemppainen, J.M.; Sack, J.A.; Chung, H.; Das, S.; Hollister, S.J.; Feinberg, S.E. Computed Tomography-Based Tissue-Engineered scaffolds in craniomaxillofacial surgery. Int. J. Med. Robot. Comput. Assist. Surg. MRCAS 2007, 3, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Galusha, J.W.; Richey, L.R.; Gardner, J.S.; Cha, J.N.; Bartl, M.H. Discovery of a diamond-based photonic crystal structure in beetle scales. Phys. Rev. E 2008, 77, 050904. [Google Scholar] [CrossRef] [PubMed]
- Galusha, J.W.; Richey, L.R.; Jorgensen, M.R.; Gardner, J.S.; Bartl, M.H. Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route. J. Mater. Chem. 2010, 20, 1277–1284. [Google Scholar] [CrossRef]
- Kapfer, S.C.; Hyde, S.T.; Mecke, K.; Arns, C.H.; Schröder-Turk, G.E. Minimal surface scaffold designs for tissue engineering. Biomaterials 2011, 32, 6875–6882. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Robb, R.A. Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med. Image Anal. 2006, 10, 693–712. [Google Scholar] [CrossRef]
- Melchels, F.P.; Bertoldi, K.; Gabbrielli, R.; Velders, A.H.; Feijen, J.; Grijpma, D.W. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 2010, 31, 6909–6916. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 2011, 12, 61–71. [Google Scholar] [CrossRef]
- Yoo, D.J. Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 2011, 32, 7741–7754. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Shang, C.; Lin, Z.; Li, B. Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Comput. Methods Appl. Mech. Eng. 2018, 336, 333–352. [Google Scholar] [CrossRef]
- Chen, H.; Guo, Y.; Rostami, R.; Fan, S.; Tang, K.; Yu, Z. Porous Structure Design Using Parameterized Hexahedral Meshes and Triply Periodic Minimal Surfaces. In Proceedings of the Computer Graphics International 2018, Bintan Island, Indonesia, 11–14 June 2018; pp. 117–128. [Google Scholar] [CrossRef]
- Yang, N.; Quan, Z.; Zhang, D.; Tian, Y. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Comput.-Aided Des. 2014, 56, 11–12. [Google Scholar] [CrossRef]
- Molino, N.; Bridson, R.; Teran, J.; Fedkiw, R. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In Proceedings of the 12th International Meshing Roundtable, Santa Fe, NM, USA, 14–17 September 2003; pp. 103–114. [Google Scholar]
- Wang, J.; Yu, Z. Feature-sensitive tetrahedral mesh generation with guaranteed quality. Comput.-Aided Des. 2012, 44, 400–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Yu, Z.; Holst, M. Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation. Comput. Aided Geom. Des. 2012, 29, 707–721. [Google Scholar] [CrossRef] [PubMed]
TPMS Surface Type | Mathematical Definitions |
---|---|
P Surface | |
D Surface | |
G Surface | |
I-WP Surface | |
Curvatures | TPMS Surfaces | TIS Surfaces | ||||
---|---|---|---|---|---|---|
P-Surface | D-Surface | G-Surface | P-Surface | D-Surface | G-Surface | |
Minimum | −12.66 | −14.99 | −14.34 | −33.19 | −14.88 | −26.48 |
Maximum | 12.59 | 13.83 | 18.32 | 21.09 | 12.16 | 15.17 |
Medium | −0.57 | −1.18 | −0.66 | −1.68 | 0.45 | −1.68 |
Average | −0.49 | −1.29 | −0.79 | −2.88 | −0.94 | −2.79 |
Standard Deviation | 3.78 | 3.32 | 2.85 | 4.11 | 4.32 | 4.51 |
Variance | 14.28 | 11.04 | 8.11 | 16.88 | 18.63 | 20.36 |
TPMS P-Surface | TPMS D-Surface | TPMS G-Surface | |||
---|---|---|---|---|---|
Threshold C | Porosity (%) | Threshold C | Porosity (%) | Threshold C | Porosity (%) |
−0.95 | 22.79 | −0.95 | 10.28 | −0.95 | 18.77 |
−0.5 | 35.71 | −0.5 | 29.42 | −0.5 | 33.81 |
0 | 49.98 | 0 | 49.94 | 0 | 50.00 |
0.5 | 64.28 | 0.5 | 70.57 | 0.5 | 66.19 |
0.95 | 77.21 | 0.95 | 89.71 | 0.95 | 81.22 |
TIS P-Surface | TIS D-Surface | TIS G-Surface | |||
Threshold | Porosity (%) | Threshold | Porosity (%) | Threshold | Porosity (%) |
0.118 | 18.36 | 0.569 | 57.35 | 0.431 | 44.03 |
0.157 | 35.80 | 0.618 | 66.88 | 0.480 | 57.29 |
0.196 | 49.36 | 0.667 | 75.73 | 0.529 | 67.76 |
0.235 | 61.17 | 0.716 | 83.04 | 0.578 | 76.09 |
0.275 | 71.86 | 0.765 | 89.90 | 0.627 | 84.04 |
Surface Type | Surface Area for Unit Volume | |
---|---|---|
TPMS Surfaces | P-Surface | 2.353180 |
D-Surface | 3.828864 | |
G-Surface | 3.083422 | |
TIS Surfaces | P-Surface | 3.798055 |
D-Surface | 2.367160 | |
G-Surface | 2.654556 |
Resolution | TPMS P-Surface | TIS P-Surface | ||
---|---|---|---|---|
Computational Time (s) | Number of Triangles | Computational Time (s) | Number of Triangles | |
100 | 0.108 | 74,216 | 0.083 | 27,379 |
200 | 1.212 | 299,672 | 0.674 | 112,381 |
300 | 3.895 | 675,848 | 2.930 | 254,074 |
400 | 9.749 | 1,203,704 | 7.361 | 454,630 |
500 | 18.524 | 1,882,376 | 14.708 | 708,986 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Liu, K.; Yu, Z. Tetrahedron-Based Porous Scaffold Design for 3D Printing. Designs 2019, 3, 16. https://doi.org/10.3390/designs3010016
Guo Y, Liu K, Yu Z. Tetrahedron-Based Porous Scaffold Design for 3D Printing. Designs. 2019; 3(1):16. https://doi.org/10.3390/designs3010016
Chicago/Turabian StyleGuo, Ye, Ke Liu, and Zeyun Yu. 2019. "Tetrahedron-Based Porous Scaffold Design for 3D Printing" Designs 3, no. 1: 16. https://doi.org/10.3390/designs3010016
APA StyleGuo, Y., Liu, K., & Yu, Z. (2019). Tetrahedron-Based Porous Scaffold Design for 3D Printing. Designs, 3(1), 16. https://doi.org/10.3390/designs3010016