Simulation and Analysis of Thermal Insulators Applied to Post-Disaster Temporary Shelters in Tropical Countries
Abstract
:1. Introduction
2. Theoretical Background
2.1. Modular Construction
2.2. Shipping Containers
2.3. Shipping Containers for Post-Disaster Reconstruction
3. Materials and Methods
3.1. The Design
3.2. Modeling and Insulation Material Selection
3.3. Climate Conditions
3.4. Energy Simulation
3.5. Economic Analysis
4. Results and Discussion
4.1. Results for Uberlândia
- RedCEP is the percentage reduction in primary energy consumption of the housing unit in the real model compared to the housing unit in the reference model;
- CEP, ref is the annual primary energy consumption of the housing unit in the reference model (kWh/year);
- CEP, real is the annual consumption of primary energy of the housing unit in the real model (kWh/year).
- Fce is the energy conversion factor.
4.2. Results for Macaé
4.3. Comparison between Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norwegian Refugee Council. Children and Youth in Internal Displacement, 1st ed.; The Internal Displacement Monitoring Centre: Geneva, Switzerland, 2022; p. 12. [Google Scholar]
- Ling, P.C.H.; Tan, C.S.; Saggaff, A. Feasibility of ISO shipping container as transitional shelter—A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 012056. [Google Scholar] [CrossRef]
- Hong, Y. A study on the condition of temporary housing following disasters: Focus on container housing. Front. Archit. Res. 2017, 6, 374–383. [Google Scholar] [CrossRef]
- Lin, H.; Cheng, J. A study of the simulation and analysis of the flow field of natural convection for a container house. Sustainability 2020, 12, 9845. [Google Scholar] [CrossRef]
- Tanyer, A.M.; Tavukcuoglu, A.; Bekboliev, M. Assessing the airtightness performance of container houses in relation to its effect on energy efficiency. Build. Environ. 2018, 134, 59–73. [Google Scholar] [CrossRef]
- Dumas, A.; Trancossi, M.; Madonia, M.; Bonnici, M. A novel concept of container house with zero energetic consumption. SAE Int. 2012, 1, 1507. [Google Scholar] [CrossRef]
- Bertolini, M.; Guardigli, L. Upcycling shipping containers as building components: An environmental impact assessment. Int. J. Life Cycle Assess. 2020, 25, 947–963. [Google Scholar] [CrossRef]
- Shi, M. Assessment of the impact of windows and building orientation on the energy intensity of container houses using BIM. IOP Conf. Ser. Earth Environ. Sci. 2021, 769, 022023. [Google Scholar] [CrossRef]
- Pereira-de-Oliveira, L.A.; Bernardo, L.F.A.; Marques, A.R.A. Architectural building design with refurbished shipping containers: A typological and modular approach. J. Eng. Res. 2022, 10, 1–20. [Google Scholar] [CrossRef]
- Elrayies, G.M. Thermal performance assessment of shipping container architecture in hot and humid climates. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 1114–1126. [Google Scholar] [CrossRef]
- Shen, J.; Copertaro, B.; Zhang, X.; Koke, J.; Kaufmann, P.; Krause, S. Exploring the potential of climate-adaptative container building design under future climates scenarios in three different climate zones. Sustainability 2020, 12, 108. [Google Scholar] [CrossRef]
- Koke, J.; Schippmann, A.; Shen, J.; Zhang, X.; Kaufmann, P.; Krause, S. Strategies of design concepts and energy systems for nearly zero-energy container buildings (NZECBs) in different climates. Buildings 2021, 11, 364. [Google Scholar] [CrossRef]
- Dara, C.; Hachem-Vermette, C.; Assefa, G. Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study. Build. Environ. 2019, 163, 106332. [Google Scholar] [CrossRef]
- Tan, C.S.; Ling, P.C.H. Shipping container as shelter provision solution for post-disaster reconstruction. E3S Web Conf. 2018, 65, 08007. [Google Scholar] [CrossRef]
- Islam, H.; Zhang, G.; Setunge, S.; Bhuiyan, M.A. Life cycle assessment of shipping container home: A sustainable construction. Energy Build. 2016, 128, 673–685. [Google Scholar] [CrossRef]
- Giiriunas, K.; Sezen, H.; Dupaix, R.B. Evaluation, modeling, and analysis of shipping container building structures. Eng. Struct. 2012, 43, 48–57. [Google Scholar] [CrossRef]
- Bowley, W.; Mukhopadhyaya, P. A sustainable design for an off-grid passive container house. Int. Rev. Appl. Sci. Eng. 2017, 8, 145–152. [Google Scholar] [CrossRef]
- Musa, M.F.; Yusof, M.R.; Mohammad, M.F.; Samsudin, N.S. Towards the adoption of modular construction and prefabrication in the construction environment: A case study in Malaysia. ARPN J. Eng. Appl. Sci. 2016, 11, 8122–8131. [Google Scholar]
- Chatzimichailidou, M.; Ma, Y. Using BIM in the safety risk management of modular construction. Saf. Sci. 2022, 154, 105852. [Google Scholar] [CrossRef]
- Lacey, A.W.; Chen, W.; Hao, H.; Bi, K. Structural response of modular buildings—An overview. J. Build. Eng. 2018, 16, 45–56. [Google Scholar] [CrossRef]
- Ye, Z.; Giriunas, K.; Sezen, H.; Wu, G.; Feng, D. State-of-the-art review and investigation of structural stability in multi-story modular buildings. J. Build. Eng. 2021, 33, 101844. [Google Scholar] [CrossRef]
- Rakotonjanahary, M.; Scholzen, F.; Waldmann, D. Summertime overheating risk assessment of a flexible plug-in modular unit in Luxemburgo. Sustainability 2020, 12, 8474. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Zhu, Y.; Zhang, Z. A comparative study of environmental performance between prefabricated and traditional residential buildings in China. J. Clean. Prod. 2015, 109, 131–143. [Google Scholar] [CrossRef]
- Kristiansen, A.B.; Zhao, B.Y.; Ma, T.; Wang, R.Z. The viability of solar photovoltaic powered off-grid zero energy buildings based on a container home. J. Clean. Prod. 2021, 286, 125312. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, H.; Lee, H.; Park, M.; Hyun, H. Analysis of safety risk factors of modular construction to identify accident trends. J. Asian Archit. Build. Eng. 2022, 21, 1040–1052. [Google Scholar] [CrossRef]
- Ahn, S.; Crouch, L.; Kim, T.W.; Rameezdeen, R. Comparison of worker safety risks between onsite and offsite construction methods: A site management perspective. J. Constr. Eng. Manag. 2020, 146, 05020010. [Google Scholar] [CrossRef]
- Manuel, B.; Arif, B.T.K.T.; Thibaut, G.; Paul-George, I.; Joseph, R.; Kein, V.B. Sea Container Building. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 14 June 2017. [Google Scholar]
- Moore, C.M.; Yildirim, S.G.; Baur, S.W. Educational adaption of cargo container design features. In Proceedings of the ASEE Zone III Conference, Springfield, IL, USA, 23–25 September 2015. [Google Scholar]
- Su, M.; Yang, B.; Wang, X. Research on integrated design of modular steel structure container buildings based on BIM. Adv. Civ. Eng. 2022, 2022, 4574676. [Google Scholar] [CrossRef]
- International Residential Code. Available online: https://archive.org/download/gov.law.icc.irc.2009/icc.irc.2009.pdf (accessed on 28 January 2023).
- ISO 668:1995; Series 1 Freight Containers-Classification, Dimensions and Ratings. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 830:1999; Freight Containers-Vocabulary. International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 6346:1995; Freight Containers Coding, Identification and Marking. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 1496-1:1990; Series 1 Freight Containers-Specification and Testing—Part 1: General Cargo Containers for General Purposes. International Organization for Standardization: Geneva, Switzerland, 1990.
- ISO 1161:1984/Cor 1:1990; Technical Corrigendum 1:1990 to ISO 1161:1984. International Organization for Standardization: Geneva, Switzerland, 1990.
- ISO 2308:1972; Hooks for Lifting Freight Containers of up to 30 Tonnes Capacity-Basic Requirements. International Organization for Standardization: Geneva, Switzerland, 1972.
- ISO 3874:1997; Series 1 Freight Containers Handling and Securing. International Organization for Standardization: Geneva, Switzerland, 1997.
- International Maritime Organization. International Convention for Safe Containers; International Maritime Organization: London, UK, 1996. [Google Scholar]
- Zafra, R.G.; Mayo, J.R.M.; Villareal, P.J.M.; De Padua, V.M.N.; Castillo, M.a.H.T.; Sundo, M.B.; Madlangbayan, M.S. Structural and thermal performance assessment of shipping container as post-disaster housing in tropical climates. Civ. Eng. J. 2021, 7, 1437–1458. [Google Scholar] [CrossRef]
- Obia, A.E. Architectural adaptation of the shipping container for housing the internally displaced persons in South-South Nigeria. Int. J. Archit. Eng. Constr. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Wong, E.K.H.; Tan, C.S.; Ling, P.C.H. Feasibility of using ISO shipping container to build low cost house in Malaysia. Int. J. Eng. Technol. 2018, 7, 933–939. [Google Scholar] [CrossRef]
- Sun, Z.; Mei, H.; Ni, R. Overview of modular design strategy of the shipping container architecture in cold regions. IOP Conf. Ser. Earth Environ. Sci. 2017, 63, 012035. [Google Scholar] [CrossRef]
- Dumas, A.; Trancossi, M.; Madonia, M.; Coppola, M. Zero emission temporary habitation: A passive container house acclimatized by geothermal water. J. Sol. Energy Eng. 2014, 136, 044505. [Google Scholar] [CrossRef]
- Zhang, G.; Setunge, S.; Elmpt, S. Using shipping containers to provide temporary housing in post-disaster recovery: Social case studies. Procedia Econ. Financ. 2014, 18, 618–625. [Google Scholar] [CrossRef]
- Caia, G.; Ventimiglia, F.; Maass, A. Container vs. dacha: The psychological effects of temporary housing characteristics on earthquake survivors. J. Environ. Psychol. 2010, 30, 60–66. [Google Scholar] [CrossRef]
- Revit: BIM Software for Designers, Builders, and Doers. Available online: www.autodesk.com (accessed on 15 January 2023).
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 1st ed.; Bookman: Porto Alegre, Brazil, 2014. [Google Scholar]
- Filho, M.V.A.P.M.; da Costa, B.B.F.; Najjar, M.; Figueiredo, K.V.; Mendonça, M.B.; Haddad, A.N. Sustainability assessment of a low-income building: A BIM-LCSA-FAHP-based analysis. Buildings 2022, 12, 181. [Google Scholar] [CrossRef]
- eQUEST: The Quick Energy Simulation Tool. Available online: www.doe2.com/equest (accessed on 15 January 2023).
- ABNT 16401-2:2008; Central and Unitary Air Conditioning Systems. Part 2: Thermal comfort. Brazilian Association of Technical Standards: São Paulo, Brazil, 2008.
- ISO 17772-1:2017; Energy Performance of Buildings—Indoor Environmental Quality—Part 1: Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance of Buildings. International Organization for Standardization: Geneva, Switzerland, 2017.
Model | External Dimensions | Minimal Internal Dimensions | |||||
---|---|---|---|---|---|---|---|
Length | Width | High | Length | Width | High | Floor Area | |
(m) | (m) | (m) | (m) | (m) | (m) | (m2) | |
20-ft container | 6.096 | 2.438 | 2.591 | 5.710 | 2.352 | 2.385 | 13.430 |
40-ft container | 12.192 | 2.438 | 2.591 | 11.998 | 2.352 | 2.385 | 28.219 |
20-ft HC container | 6.096 | 2.438 | 2.896 | 5.710 | 2.352 | 2.655 | 13.430 |
40-ft HC container | 12.192 | 2.438 | 2.896 | 11.998 | 2.352 | 2.655 | 28.219 |
Analyzed Scenario | Insulator Thickness (mm) | Insulator Type |
---|---|---|
1 | 0 | No insulator |
2 | 50 | PET wool |
3 | 50 | Mineral wool |
Material | Insulator Thickness (mm) | Thermal Conductivity (W/m.K) | Thermal Resistance (m2.K/W) | Density (Kg/m3) | Thermal Transmittance (W/m2.°C) |
---|---|---|---|---|---|
Mineral wool | 50 | 0.031 | 1.61 | 32 | 0.62 |
PET wool | 50 | 0.041 | 1.20 | 30 | 0.83 |
Wood floor | 30 | 0.12 | 0.25 | 450 | 4.00 |
Drywall | 18 | 0.35 | 0.05 | 720 | 19.44 |
Corten Steel | 2.6 | 55 | 4.72 × 10−5 | 7800 | 21,153.85 |
City | Medium Temperature | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uberlândia | High | 28 °C | 28 °C | 28 °C | 28 °C | 26 °C | 25 °C | 26 °C | 27 °C | 29 °C | 29 °C | 29 °C | 28 °C |
Average | 23 °C | 24 °C | 23 °C | 23 °C | 21 °C | 19 °C | 20 °C | 21 °C | 23 °C | 24 °C | 23 °C | 23 °C | |
Low | 20 °C | 20 °C | 20 °C | 18 °C | 16 °C | 15 °C | 15 °C | 16 °C | 18 °C | 19 °C | 20 °C | 20 °C | |
Macaé | High | 31 °C | 32 °C | 31 °C | 30 °C | 28 °C | 27 °C | 27 °C | 27 °C | 28 °C | 28 °C | 29 °C | 31 °C |
Average | 27 °C | 27 °C | 26 °C | 25 °C | 23 °C | 22 °C | 22 °C | 22 °C | 23 °C | 24 °C | 25 °C | 26 °C | |
Low | 23 °C | 23 °C | 23 °C | 21 °C | 19 °C | 18 °C | 18 °C | 18 °C | 19 °C | 20 °C | 22 °C | 23 °C |
Hour | Devices Use | Lighting | Hour | Devices Use | Lighting | Hour | Devices Use | Lighting |
---|---|---|---|---|---|---|---|---|
01:00 | 50 | 0 | 09:00 | 70 | 15 | 17:00 | 50 | 20 |
02:00 | 50 | 0 | 10:00 | 50 | 15 | 18:00 | 70 | 20 |
03:00 | 50 | 0 | 11:00 | 50 | 5 | 19:00 | 70 | 20 |
04:00 | 50 | 0 | 12:00 | 60 | 5 | 20:00 | 80 | 20 |
05:00 | 50 | 0 | 13:00 | 60 | 5 | 21:00 | 80 | 20 |
06:00 | 50 | 0 | 14:00 | 60 | 5 | 22:00 | 80 | 20 |
07:00 | 50 | 15 | 15:00 | 60 | 5 | 23:00 | 60 | 15 |
08:00 | 70 | 15 | 16:00 | 50 | 5 | 24:00 | 60 | 15 |
Parameter | Adopted Option |
---|---|
Heat transmission through opaque exterior surfaces | Delayed method via conduction transform functions. |
Heat transmission through transparent surfaces | 84% glass solar factor |
Weather data | Based on the Revit database for stations located in the analyzed cities. |
Occupancy schedules | Based on ISO 17772-1:2017 [51] |
HVAC System | Residential split/compact system gas residencial 14 SEER/0.9 AFUE < 5.5 ton. |
Year | PET Wool | Mineral Wool |
---|---|---|
1 | II—AE1 | II—AE1 |
2 | II—(AE1 + AE2) | II—(AE1 + AE2) |
(…) | (…) | (…) |
20 | II—(AE1 + (…) + AE20) | II—(AE1 + (…) + AE20) |
Month | Consumption (kWh) | ||
---|---|---|---|
No Insulation | PET Wool | Mineral Wool | |
January | 178.20 | 119.60 | 98.50 |
February | 175.50 | 119.90 | 95.30 |
March | 239.60 | 172.90 | 127.20 |
April | 216.40 | 145.80 | 113.40 |
May | 126.60 | 79.60 | 79.60 |
June | 107.90 | 70.10 | 75.60 |
July | 94.30 | 62.50 | 68.50 |
August | 133.60 | 88.20 | 90.30 |
September | 200.00 | 142.20 | 117.10 |
October | 201.40 | 146.70 | 110.10 |
November | 178.40 | 127.30 | 98.60 |
December | 229.70 | 161.90 | 116.40 |
Annual consumption | 2081.60 | 1436.70 | 1190.60 |
Material | CEP, Ref | CEP, Real | Fce | RedCEP |
---|---|---|---|---|
Mineral wool | 2081.60 | 1190.60 | 1.6 | 42.80% |
PET wool | 2081.60 | 1436.70 | 1.6 | 30.98% |
Month | PET Wool X No Insulator | Mineral Wool X No Insulator | Mineral Wool X PET Wool |
---|---|---|---|
January | 32.88% | 44.73% | 11.84% 1 |
February | 31.68% | 45.70% | 14.02% 1 |
March | 27.84% | 46.91% | 19.07% 1 |
April | 32.62% | 47.60% | 14.97% 1 |
May | 37.12% | 37.12% | 0.00% 2 |
June | 35.03% | 29.94% | 5.10% 3 |
July | 33.72% | 27.36% | 6.36% 3 |
August | 33.98% | 32.41% | 1.57% 3 |
September | 28.90% | 41.45% | 12.55% 1 |
October | 27.16% | 45.33% | 18.17% 1 |
November | 28.64% | 44.73% | 16.09% 1 |
December | 29.52% | 49.33% | 19.81% 1 |
Material | Unit Cost (R$/m2) | Area (m2) | Total Cost (R$) |
---|---|---|---|
Mineral wool | 25.83 | 114.60 | 2960.12 |
PET wool | 14.59 | 114.60 | 1672.01 |
Year | PET Wool (R$) | Mineral Wool (R$) |
---|---|---|
1 | −1250.78 | −2378.12 |
2 | −829.57 | −1796.18 |
3 | −408.37 | −1214.24 |
4 | 12.84 | −632.30 |
5 | 434.04 | −50.36 |
6 | 855.24 | 531.58 |
7 | 1276.45 | 1113.52 |
8 | 1697.65 | 1695.45 |
9 | 2118.85 | 2277.39 |
10 | 2540.06 | 2859.33 |
11 | 2961.26 | 3441.27 |
12 | 3382.46 | 4023.21 |
13 | 3803.67 | 4605.15 |
14 | 4224.87 | 5187.09 |
15 | 4646.07 | 5769.03 |
16 | 5067.28 | 6350.97 |
17 | 5488.48 | 6932.90 |
18 | 5909.68 | 7514.84 |
19 | 6330.89 | 8096.78 |
20 | 6752.09 | 8678.72 |
Month | Consumption (kWh) | ||
---|---|---|---|
No Insulation | PET Wool | Mineral Wool | |
January | 269.60 | 202.50 | 142.00 |
February | 298.00 | 221.10 | 149.60 |
March | 307.20 | 223.90 | 153.30 |
April | 209.10 | 141.30 | 112.00 |
May | 163.80 | 107.70 | 96.50 |
June | 103.90 | 63.30 | 68.40 |
July | 110.70 | 71.80 | 74.10 |
August | 125.30 | 85.40 | 85.70 |
September | 170.60 | 120.60 | 103.60 |
October | 183.60 | 131.30 | 106.00 |
November | 300.20 | 222.50 | 154.30 |
December | 297.30 | 219.30 | 151.30 |
Annual consumption | 2539.30 | 1810.70 | 1396.80 |
Material | CEP, Ref | CEP, Real | Fce | RedCEP |
---|---|---|---|---|
Mineral wool | 2539.30 | 1396.80 | 1.6 | 44.99% |
PET wool | 2539.30 | 1810.70 | 1.6 | 28.69% |
Month | PET Wool X No Insulator | Mineral Wool X No Insulator | Mineral Wool X PET Wool |
---|---|---|---|
January | 24.89% | 47.33% | 22.44% 1 |
February | 25.81% | 49.80% | 23.99% 1 |
March | 27.12% | 50.10% | 22.98% 1 |
April | 32.42% | 46.44% | 14.01% 1 |
May | 34.25% | 41.09% | 6.84% 1 |
June | 39.08% | 34.17% | 4.91% 3 |
July | 35.14% | 33.06% | 2.08% 3 |
August | 31.84% | 31.60% | 0,24% 2 |
September | 29.31% | 39.27% | 9.96% 1 |
October | 28.49% | 42.27% | 13.78% 1 |
November | 25.88% | 48.60% | 22.72% 1 |
December | 26.24% | 49.11% | 22.87% 1 |
Year | PET Wool (R$) | Mineral Wool (R$) |
---|---|---|
1 | −1122.54 | −2098.49 |
2 | −573.10 | −1236.92 |
3 | −23.66 | −375.35 |
4 | 525.78 | 486.22 |
5 | 1075.22 | 1347.79 |
6 | 1624.66 | 2209.36 |
7 | 2174.10 | 3070.93 |
8 | 2723.54 | 3932.50 |
9 | 3272.98 | 4794.07 |
10 | 3822.42 | 5655.64 |
11 | 4371.86 | 6517.21 |
12 | 4921.30 | 7378.78 |
13 | 5470.74 | 8240.35 |
14 | 6020.18 | 9101.92 |
15 | 6569.62 | 9963.49 |
16 | 7119.06 | 10,825.06 |
17 | 7668.50 | 11,686.63 |
18 | 8217.94 | 12,548.20 |
19 | 8767.38 | 13,409.77 |
20 | 9316.82 | 14,271.34 |
Uberlândia (kWh) | Macaé (kWh) | Consumption Difference (kWh) | Consumption Difference (%) | |
---|---|---|---|---|
No insulator | 2081.60 | 2539.30 | 457.70 | 18.02 |
PET wool | 1436.70 | 1810.70 | 374.00 | 20.65 |
Mineral wool | 1190.60 | 1396.80 | 206.20 | 14.76 |
Uberlândia | Macaé | |
---|---|---|
PET wool | 4 years | 3 years |
Mineral wool | 5 years and 1 month | 3 years and 5 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, B.B.F.; Silva, C.F.P.; Maciel, A.C.F.; Cusi, H.D.P.; Maquera, G.; Haddad, A.N. Simulation and Analysis of Thermal Insulators Applied to Post-Disaster Temporary Shelters in Tropical Countries. Designs 2023, 7, 64. https://doi.org/10.3390/designs7030064
da Costa BBF, Silva CFP, Maciel ACF, Cusi HDP, Maquera G, Haddad AN. Simulation and Analysis of Thermal Insulators Applied to Post-Disaster Temporary Shelters in Tropical Countries. Designs. 2023; 7(3):64. https://doi.org/10.3390/designs7030064
Chicago/Turabian Styleda Costa, Bruno B. F., Caio F. P. Silva, Ana Carolina F. Maciel, Herson D. P. Cusi, Gladys Maquera, and Assed N. Haddad. 2023. "Simulation and Analysis of Thermal Insulators Applied to Post-Disaster Temporary Shelters in Tropical Countries" Designs 7, no. 3: 64. https://doi.org/10.3390/designs7030064
APA Styleda Costa, B. B. F., Silva, C. F. P., Maciel, A. C. F., Cusi, H. D. P., Maquera, G., & Haddad, A. N. (2023). Simulation and Analysis of Thermal Insulators Applied to Post-Disaster Temporary Shelters in Tropical Countries. Designs, 7(3), 64. https://doi.org/10.3390/designs7030064