A Laminated Spherical Tsunami Shelter with an Elastic Buffer Layer and Its Integrated Bulge Processing Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Single-Layer Spherical Tsunami Shelter Structure
2.2. Laminated Spherical Tsunami Shelter Structure with Elastic Buffer Layer
3. Results and Discussion
3.1. Shape Accuracy of the Bulge Formed in the Spherical Shell
3.2. Calculation of Basic Part Parameters and Water Pressure
3.3. Cushioning Effect of Laminated Spherical Shell
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernard, E.N. Tsunami Preparedness: Is Zero Casualties Possible? Pure Appl. Geophys. 2022, 1, 1573–1586. [Google Scholar] [CrossRef]
- Alfian, N.N.; Kartikasari, D.; Widodo, N.S.A.; Suroso, D.J. Smart Folding and Floating Shelter Design for Disaster Mitigation with Natural Ventilation and UVC System. Int. J. Disaster Manag. 2021, 4, 65–76. [Google Scholar] [CrossRef]
- Matsutomi, H.; Yiyitsuka, H. Land velocity of tsunami and its simple estimation method. Proc. Coast. Eng. JSCE 1998, 45, 361–365. [Google Scholar]
- Takahashi, K.; Maeda, Y.; Nishihata, T.; Furumaki, D. Experimental Study on Influence between Tsunami Wave Direction and Wave Pressure Acting on Structures. Proc. Coast. Eng. JSCE 2014, 70, 306–310. [Google Scholar]
- Sakakiyama, T. Tsunami Inundatation Flow and Tsunami Pressure on Structures. Proc. Coast. Eng. JSCE 2012, 68, 771–775. [Google Scholar]
- Kishi, T.; Minami, K.; Masuda, M. Basic study of application of numerical simulation by MPS method on Floating Large size Tsunami Shelter motion. J. Jpn. Soc. Nav. Archit. Ocean Eng. 2016, 24, 147–156. [Google Scholar]
- Mutsuda, H.; Fujii, S.; Kamada, M.; Doi, Y.; Fukuhara, T. Characteristics of Motion and Fluid Force on Large-sized Tsunami Shelter with Mooring. Proc. Coast. Eng. JSCE 2013, 69, 1011–1015. [Google Scholar]
- Mutsuda, H.; Fujii, S.; Kamada, M.; Doi, Y.; Fukuhara, T. Reduction of Tsunami Force Acting on a Floating/Submerged Tsunami Shelter and Its Motions. J. Jpn. Soc. Nav. Archit. Ocean Eng. 2014, 20, 49–57. [Google Scholar]
- Watanabe, K.; Saitou, K.; Makanae, J.; Kunii, Y. Investigation of Wave Force Acting on Floating Type Tsunami Evacuation Shelter at Tsunami Considering Inundation Depth. Proc. Civ. Eng. Ocean 2020, 76, 1079–1084. [Google Scholar] [CrossRef]
- Watanabe, K.; Kaneko, Y. A Study on Behavior of Floating Tsunami Shelter Installed on Tsunami Evacuation Building. Proc. Civ. Eng. Ocean 2015, 71, 701–706. [Google Scholar]
- Watanabe, K.; Fujii, R. A Study on Behavior of Tsunami Evacuation Shelters When the Second and Later Waves Become the Largest Tsunami. Proc. Civ. Eng. Ocean 2017, 73, 210–215. [Google Scholar]
- Shigemastu, T.; Akechi, K.; Koike, T. Fundamental Experiment for Development of Floating-Type Evacuation Shelter from Tsunami. Proc. Civ. Eng. Ocean 2008, 24, 105–110. [Google Scholar] [CrossRef]
- Matsumoto, H.; Shigemastu, T. Research on Motion Prediction for Floating Tsunami Evacuation Facilities. Proc. Civ. Eng. Ocean 2014, 70, 319–324. [Google Scholar]
- Shigemastu, T.; Nakahigashi, D. An Experimental Study for Motion Characteristics of a Floating-Type Evacuation Shelter Covered by a Sphere Shell from Tsunami. Proc. Civ. Eng. Ocean 2011, 67, 751–755. [Google Scholar]
- Nakahigashi, D.; Shigemastu, T. Development of a High Accuracy Numerical Model for Predicting Motion of a Floating-Type Evacuation shelter from Tsunami with Eccentricity. Proc. Coast. Eng. JSCE 2014, 70, 901–905. [Google Scholar]
- Kovacs, F.; Tarnai, T.; Fowler, P.W.; Guest, S.D. A class of expandable polyhedral structures. Int. J. Solids Struct. 2004, 41, 1119–1137. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, R.; Lu, C.; Liu, K.; Feng, J.; Sareh, P. Multi-stability of the hexagonal origami hypar based on group theory and symmetry breaking. Int. J. Mech. Sci. 2023, 247, 108196. [Google Scholar] [CrossRef]
- Jalali, E.; Soltanizadeh, H.; Chen, Y.; Xie, Y.M.; Sareh, P. Selective hinge removal strategy for architecting hierarchical auxetic metamaterials. Commun. Mater. 2022, 3, 97. [Google Scholar] [CrossRef]
- Norman, A.D.; Seffen, K.A.; Guest, S.D. Morphing of curved corrugated shells. Int. J. Solids Struct. 2009, 46, 1624–1633. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, E.; Hoan, N.T.T.; Tokura, S.; Hagiwara, I. Modelling and simulation for optimal design of foldable tsunami pod. Trans. JSME Jpn. 2015, 81, 15–00268. [Google Scholar]
- Iarriccio, G.; Pellicano, F. Nonlinear Dynamics and Stability of Shallow Spherical Caps Under Pressure Loading. J. Comput. Nonlinear Dyn. 2021, 16, 021006. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, G.; Zhao, L.; Li, X. Dynamic response of a sandwich spherical shell with graded metallic foam cores subjected to blast loading. Compos. Part A Appl. Sci. Manuf. 2014, 56, 262–271. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, X. Developments and perspectives on the precision forming processes for ultra-large size integrated components. Int. J. Extrem. Manuf. 2019, 1, 022002. [Google Scholar] [CrossRef]
- Bell, C.; Corney, J.; Zuelli, N.; Savings, D. A state of the art review of hydroforming technology and Its applications, research areas, history, and future in manufacturing. Int. J. Mater. Form. 2020, 13, 789–828. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dai, K.; Yuan, S.; Zeng, Y.; Zhang, X. The development of integral hydro-bulge forming (IHBF) process and its numerical simulation. J. Mater. Process. Technol. 2000, 102, 168–173. [Google Scholar] [CrossRef]
- Jing, Y.; Guan, J.; Kong, C.; Zhao, W.; Gomi, N.; Zhao, X. Integral Bulge Forming Method for Soccer Ball-Shaped Tank Using Symmetrical Preformed Box Consisting of Plate Parts. Am. J. Mech. Appl. 2022, 10, 16–24. [Google Scholar]
- Jing, Y.; Kong, C.; Guan, J.; Zhao, W.; Fukuchi, A.B.; Zhao, X. Design and Manufacturing Process of a New Type of Deep-Sea Spherical Pressure Hull Structure. Design 2023, 7, 12. [Google Scholar] [CrossRef]
- Coxeter, H.S.M. Regular Polytopes; Dover Publications: Mineola, NY, USA, 1973; pp. 15–92. [Google Scholar]
Spherical Shell | Polygon Part Side Length a (mm) | Average Radius of Spherical Shell, R (mm) | ||
---|---|---|---|---|
Design Value | Measured Value | Error | ||
Inner | 72 | 180 | 180.50 | 0.28% |
Outer | 84 | 210 | 209.97 | −0.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Chen, L.; Guan, J.; Zhao, W.; Hagiwara, I.; Zhao, X. A Laminated Spherical Tsunami Shelter with an Elastic Buffer Layer and Its Integrated Bulge Processing Method. Designs 2023, 7, 95. https://doi.org/10.3390/designs7040095
Hou J, Chen L, Guan J, Zhao W, Hagiwara I, Zhao X. A Laminated Spherical Tsunami Shelter with an Elastic Buffer Layer and Its Integrated Bulge Processing Method. Designs. 2023; 7(4):95. https://doi.org/10.3390/designs7040095
Chicago/Turabian StyleHou, Junfu, Li Chen, Jingchao Guan, Wei Zhao, Ichirou Hagiwara, and Xilu Zhao. 2023. "A Laminated Spherical Tsunami Shelter with an Elastic Buffer Layer and Its Integrated Bulge Processing Method" Designs 7, no. 4: 95. https://doi.org/10.3390/designs7040095
APA StyleHou, J., Chen, L., Guan, J., Zhao, W., Hagiwara, I., & Zhao, X. (2023). A Laminated Spherical Tsunami Shelter with an Elastic Buffer Layer and Its Integrated Bulge Processing Method. Designs, 7(4), 95. https://doi.org/10.3390/designs7040095