An Optimized Control System for the Independent Control of the Inputs of the Doherty Power Amplifier
Abstract
:1. Introduction
2. System Architecture
3. Passive and Active Devices
3.1. The 3 dB Wilkinson Power Divider
3.2. Variable Attenuator
3.3. Variable Phase Shifter
3.4. The 20 dB Directional Coupler
3.5. Doherty Power Combiner
3.6. Quarter-Wavelength Transmission Line
3.7. Power Amplifier (QPD0005)
3.8. Drive Amplifier
4. Measurements Results
4.1. Wilkinson Power Divider
4.2. Variable Phase Shifter
4.3. Drive Amplifier
4.4. Power Amplifier (QPD0005)
4.5. Quarter-Wavelength Transmission Line
4.6. Doherty Power Combiner
4.7. The 20 dB Directional Coupler
4.8. Enhanced Outputs for Optimized Inputs of the Designed System
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Camarchia, V.; Pirola, M.; Quaglia, R.; Jee, S.; Cho, Y.; Kim, B. The Doherty Power Amplifier: Review of Recent Solutions and Trends. IEEE Trans. Microw. Theory Tech. 2015, 63, 559–571. [Google Scholar] [CrossRef]
- Raab, F.; Asbeck, P.; Cripps, S.; Kenington, P.; Popovic, Z.; Pothecary, N.; Sevic, J.; Sokal, N. Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech. 2002, 50, 814–826. [Google Scholar] [CrossRef]
- Kotzebue, K. A Quasi-Linear Approach to the Design of Microwave Transistor Power Amplifiers (Short Papers). IEEE Trans. Microw. Theory Tech. 1976, 24, 975–978. [Google Scholar] [CrossRef]
- Holmes, D.G. A simple output impedance model for Doherty peaking sub-amplifiers biased in Class C. In Proceedings of the 2013 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), Austin, TX, USA, 20–20 January 2013; pp. 70–72. [Google Scholar]
- Mengozzi, M.; Gibiino, G.P.; Angelotti, A.M.; Santarelli, A.; Florian, C.; Colantonio, P. Automatic Optimization of Input Split and Bias Voltage in Digitally Controlled Dual-Input Doherty RF PAs. Energies 2022, 15, 4892. [Google Scholar] [CrossRef]
- Kantana, C.; Benosman, M.; Ma, R.; Komatsuzaki, Y. A System Approach for Efficiency Enhancement and Linearization Technique of Dual-Input Doherty Power Amplifier. IEEE J. Microw. 2023, 3, 115–133. [Google Scholar] [CrossRef]
- Woo, J.L.; Park, S.; Kim, U.; Kwon, Y. Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking. IEEE Trans. Microw. Theory Tech. 2014, 62, 3452–3464. [Google Scholar] [CrossRef]
- Nader, C.; Landin, P.N.; Van Moer, W.; Bjorsell, N.; Handel, P.; Ronnow, D. Peak-Power Controlling Technique for Enhancing Digital Pre-Distortion of RF Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2012, 60, 3571–3581. [Google Scholar] [CrossRef]
- Kim, H.; Seo, C. Improvement of Power Added Efficiency and Linearity in Doherty Amplifier using Dual Bias Control and Photonic Band-Gap Structure. In Proceedings of the 2007 Asia-Pacific Microwave Conference—(APMC 2007), Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar]
- Zhu, S.; Chen, X.; Kong, W.; Ding, D.; Xia, J. A harmonic controlled doherty power amplifier with enhanced efficiency at back-off power. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Xiao, Z.; Hu, Y.; Wang, W. A Doherty power amplifier employing direct input power dividing technology. In Proceedings of the 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST), Chengdu, China, 19–20 April 2012; pp. 1–3. [Google Scholar]
- Wincza, K.; Smolarz, R.; Gruszczynski, S. Broadband Differentially-Fed Directional Coupler Composed of Coupled and Uncoupled Sections. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 1131–1133. [Google Scholar]
- Smolarz, R.; Wincza, K.; Gruszczynski, S. Design of 3-dB Differentially-Fed Tandem Directional Couplers. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Shuichi, S.; Yuji, K.; Shintaro, S. Adaptive Input-Power Distribution in Doherty Power Amplifier using ModifiedWilkinson Power Divider. In Proceedings of the 2020 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Antonio, TX, USA, 26–29 January 2020; pp. 34–37. [Google Scholar]
- Lopera, J.R.; Mayock, J.; Sun, Q.; Gadringer, M.; Bosch, W.; Leitgeb, E. A 3.5GHz High Power GaN Hybrid Doherty Power Amplifier with Dynamic Input Power Splitting for Enhanced Power Added Efficiency at Backoff. In Proceedings of the 2021 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), San Diego, CA, USA, 17–20 January 2021; pp. 1–4. [Google Scholar]
- Kumari, C.; Chattoraj, N. Design of an Elementary Microstrip Power Splitter for Antenna Array. In Proceedings of the 2021 National Conference on Communications (NCC), Virtual, 27–30 July 2021; pp. 1–5. [Google Scholar]
- Masood, M.; Staudinger, J.; Wood, J.; Bokatius, M.; Kenney, J.S. Linearity considerations for a high power Doherty amplifier. In Proceedings of the 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), Santa Clara, CA, USA, 15–18 January 2012; pp. 77–80. [Google Scholar]
- Hau, G.; Nishimura, T.B.; Iwata, N. A highly efficient linearized wide-band CDMA handset power amplifier based on pre-distortion under various bias conditions. IEEE Trans. Microw. Theory Tech. 2001, 49, 1194–1201. [Google Scholar] [CrossRef]
- Tiwari, T.; Krishnan, R. Design and development of waveguide type dual directional coupler for s-band linear accelerator. In Proceedings of the 2008 International Conference on Recent Advances in Microwave Theory and Applications (MICROWAVE), Jaipur, India, 21–24 November 2008; pp. 252–254. [Google Scholar]
- Kim, C.-S.; Lim, J.-S.; Kim, D.-J.; Ahn, D. A design of single and multi-section microstrip directional coupler with the high directivity. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 6–11 June 2004. [Google Scholar]
- Adya, S.; Jain, A.; Sharma, D.; Gupta, A.; Bhalla, V. Design and fabrication of microstrip equal Wilkinson RF power divider at 650MHz using MWO. In Proceedings of the 2017 IEEE Applied Electromagnetics Conference (AEMC), Aurangabad, India, 19–22 December 2017; pp. 1–2. [Google Scholar]
- Ahn, S.-H.; Lee, J.W.; Cho, C.S.; Lee, T.K. A Wilkinson Power Divider with Different Power Ratios at Different Frequencies. In Proceedings of the 2007 Asia-Pacific Microwave Conference—(APMC 2007), Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar]
- Najib, N.; You, K.Y.; Lee, C.Y.; Dimon, M.N.; Khamis, N.H. Compact and wideband modifiedWilkinson power dividers. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–4. [Google Scholar]
- Jongsuebchoke, I.; Torrungrueng, D.; Akkaraekthalin, P. A graphical study of quarter-wave-like transformers implemented using conjugately characteristic-impedance transmission lines. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–5. [Google Scholar]
- Shealy, J.; Smart, J.; Poulton, M.; Sadler, R.; Grider, D.; Gibb, S.; Hosse, B.; Sousa, B.; Halchin, D.; Steel, V.; et al. Gallium nitride (GaN) HEMT’s: Progress and potential for commercial applications. In Proceedings of the IEEE Gallium Arsenide Integrated Circuits Symposium, Monterey, CA, USA, 20–23 October 2002; pp. 243–246. [Google Scholar]
- Jeong-Sun, M.; Jongchan, K.; Dave, B.; Robert, G.; Danny, W.; Helen, F.; Peter, C.; Dustin, L.; Haw, T.; Chuck, M. 100-MHz–8 GHz linear distributed GaN MMIC power amplifier with improved power-added efficiency. In Proceedings of the 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR 2017), Phoenix, AZ, USA, 15–18 January 2017; pp. 40–43. [Google Scholar]
- Quaglia, R.; Camarchia, V.; Jiang, T.; Pirola, M.; Guerrieri, S.D.; Loran, B. K-Band GaAs MMIC Doherty Power Amplifier for Microwave Radio With Optimized Driver. IEEE Trans. Microw. Theory Tech. 2014, 62, 2518–2525. [Google Scholar] [CrossRef]
- Nam, J.M.; Ho, J.W.; Rea, C.M.; Hyun, L.Y. Design and realization of driving amplifier MMIC circuit stages for KT IMT-2000 handset. In Proceedings of the IEEE Region 10 Conference. TENCON 99. ‘Multimedia Technology for Asia-Pacific Information Infrastructure’, Cheju, Republic of Korea, 15–17 September 1999. [Google Scholar]
- Li, X.; Fu, H.; Ma, K.; Hu, J. A 2.4–4-GHz Wideband 7-Bit Phase Shifter With Low RMS Phase/Amplitude Error in 0.5-μm GaAs Technology. IEEE Trans. Microw. Theory Tech. 2022, 70, 1292–1301. [Google Scholar] [CrossRef]
- Heismann, F.; Ulrich, R. Integrated-Optical Single-Sideband Modulator and Phase Shifter. IEEE Trans. Microw. Theory Tech. 1982, 30, 613–617. [Google Scholar] [CrossRef]
- Lee, H.-S.; Min, B.-W. W-Band CMOS 4-Bit Phase Shifter for High Power and Phase Compression Points. IEEE Trans. Circuits Syst. II Express Briefs 2014, 62, 1–5. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, Q.-F. Analysis and Design of High-Efficiency Parallel-Circuit Class-E/F Power Amplifier. IEEE Trans. Microw. Theory Tech. 2019, 67, 2382–2392. [Google Scholar] [CrossRef]
- Leng, Y.; Zeng, Y.; Zhang, L.; Zhang, G.; Peng, Y.; Guan, J.; Yan, Y. An Extended Topology of Parallel-Circuit Class-E Power Amplifier Using Transmission-Line Compensation. IEEE Trans. Microw. Theory Tech. 2013, 61, 1628–1638. [Google Scholar] [CrossRef]
- Sah, P.; Kakaraparty, K.; Poulton, M.; Luyen, H.; Mahbub, I. Prototype for an Optimized Drive Signal Control System for a 2.5 GHz Doherty Power Amplifier. In Proceedings of the 2022 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 19–20 April 2022; pp. 1–4. [Google Scholar]
- Costanzo, F.; Camarchia, V.; Carvalho, N.B.; Colantonio, P.; Piacibello, A.; Quaglia, R.; Valenta, V.; Giofre, R. A GaN MMIC Stacked Doherty Power Amplifier For Space Applications. In Proceedings of the 2022 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Las Vegas, NV, USA, 16–19 January 2022; pp. 29–31. [Google Scholar]
- Shukla, S.; Kitchen, J. GaN-on-Si switched mode RF power amplifiers for non-constant envelope signals. In Proceedings of the 2017 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Phoenix, AZ, USA, 15–18 January 2017; pp. 88–91. [Google Scholar]
- Lin, Q.; Wu, H.-F.; Hua, Y.-N.; Chen, Y.-J.; Hu, L.-L.; Liu, L.-S.; Chen, S.-J. A 2–20-GHz 10-W High-Efficiency GaN Power Amplifier Using Reactive Matching Technique. IEEE Trans. Microw. Theory Tech. 2020, 68, 3148–3158. [Google Scholar] [CrossRef]
- Ćwikliński, M.; Brückner, P.; Leone, S.; Friesicke, C.; Maßler, H.; Lozar, R.; Sandrine, W.; Rüdiger, Q.; Oliver, A. D-Band and G-Band High-Performance GaN Power Amplifier MMICs. IEEE Trans. Microw. Theory Tech. 2019, 67, 5080–5089. [Google Scholar] [CrossRef]
- Piacibello, A.; Quaglia, R.; Camarchia, V.; Ramella, C.; Pirola, M. Dual-input driving strategies for performance enhancement of a doherty power amplifier. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 6–10 May 2018; pp. 1–4. [Google Scholar]
- Piacibello, A.; Pirola, M.; Camarchia, V.; Ramella, C.; Quaglia, R.; Zhou, X.; Chan, W.-S. Comparison of S-band Analog and Dual-Input Digital Doherty Power Amplifiers. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018. [Google Scholar]
Attenuation Word | ||||||
---|---|---|---|---|---|---|
D5 (MSB) | D4 | D3 | D2 | D1 | D0 (LSB) | Attenuation State |
H | H | H | H | H | H | 0 dB Ref. Insertion Loss |
H | H | H | H | H | L | 0.5 dB |
H | H | H | H | L | H | 1 dB |
H | H | H | L | H | H | 2 dB |
H | H | L | H | H | H | 4 dB |
H | L | H | H | H | H | 8 dB |
L | H | H | H | H | H | 16 dB |
L | L | L | L | L | L | 31.5 dB |
Bit Control | |||||||
---|---|---|---|---|---|---|---|
Phase Shifter | REF | ||||||
(REF) | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 1 | 0 | 0 | 0 | 0 | 1 | |
0 | 0 | 1 | 0 | 0 | 0 | 1 | |
0 | 0 | 0 | 1 | 0 | 0 | 1 | |
0 | 0 | 0 | 0 | 1 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
Given Phase Shift (Degrees) | Achieved Phase Shift (Degrees) | Phase Shift to Be Achieved (Degrees) | Error (%) |
---|---|---|---|
0 | 70.22 (Reference) | 70.22 (Reference) | 0 |
5 | 76.44 | 75.22 | 1.62 |
11 | 80.96 | 81.22 | 0.32 |
22 | 91.10 | 92.22 | 1.21 |
45 | 114.22 | 115.22 | 0.86 |
90 | 157.61 | 160.22 | 1.62 |
180 | −110.49 | −109.78 | 0.64 |
355 | 67.32 | 65.22 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sah, P.K.; Poulton, M.; Luyen, H.; Mahbub, I. An Optimized Control System for the Independent Control of the Inputs of the Doherty Power Amplifier. Designs 2023, 7, 131. https://doi.org/10.3390/designs7060131
Sah PK, Poulton M, Luyen H, Mahbub I. An Optimized Control System for the Independent Control of the Inputs of the Doherty Power Amplifier. Designs. 2023; 7(6):131. https://doi.org/10.3390/designs7060131
Chicago/Turabian StyleSah, Pallav Kumar, Matthew Poulton, Hung Luyen, and Ifana Mahbub. 2023. "An Optimized Control System for the Independent Control of the Inputs of the Doherty Power Amplifier" Designs 7, no. 6: 131. https://doi.org/10.3390/designs7060131
APA StyleSah, P. K., Poulton, M., Luyen, H., & Mahbub, I. (2023). An Optimized Control System for the Independent Control of the Inputs of the Doherty Power Amplifier. Designs, 7(6), 131. https://doi.org/10.3390/designs7060131