Dynamic Error Estimation in Higher-Order Finite Elements
Abstract
:1. Introduction
2. Material and Methods
2.1. Higher Order FE Formulations
2.2. FE Modal Analysis
2.3. FE Frequency Response Functions
2.4. Transient Dynamic Using the Newmark Integration Scheme
3. FE Accuracy Estimation in a Dynamic Context
4. Results and Discussion
4.1. Numerical Case Study
4.2. Accuracy of FE Modal Analysis
- first, the mass and stiffness matrices, M and K, were formulated according to Equations (2) and (3);
- the orthogonal undamped eigenvibration problem was solved using the Krylov-Schur method [44], resulting in a sparse subset of eigenpairs (λi, ψi);
- MAC was used for disambiguation and matching of the computed modes with respect to those obtained for the reference case;
- the different error metrics were computed and stored for later evaluation.
4.3. Accuracy of FE Transient Dynamic Analysis
4.3.1. Case Study 1: EΠ ≈ 0.01
4.3.2. Case Study 2: EΠ ≈ 0.003
4.3.3. Case Study 3: Equally Dense Mesh
4.4. Computational Efficiency of Higher-Order FE Formulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Damped Systems
References
- Okereke, M.; Keates, S. Finite Element Mesh Generation. In Finite Element Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 165–186. [Google Scholar]
- Fish, J.; Belytschko, T. A First Course in Finite Elements; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Logan, D. First Course in the Finite Element Method, 4th ed.; Thomson: Nelson, Toronto, ON, Canada, 2007; ISBN 0-534-55298-6. [Google Scholar]
- Cook, R.D.; Malkus, D.S.; Plhesha, M.E.; Witt, R.J. Concepts and Applications of Finite Element Analysis, 4th ed.; Wiley: Hoboken, NJ, USA, 2001; ISBN 978-0-471-35605-9. [Google Scholar]
- Yong, Y.; Lin, Y.K. Dynamic Response Analysis of Truss-Type Structural Networks: A Wave Propagation Approach. J. Sound Vib. 1992, 156, 27–45. [Google Scholar] [CrossRef]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing, 4th ed.; Katholieke Universiteit Leuven: Leuven, Belgium, 1998; ISBN 907380261X. [Google Scholar]
- Maressa, A.; Mundo, D.; Donders, S.; Desmet, W. A Wave-Based Substructuring Approach for Concept Modeling of Vehicle Joints. Comput. Struct. 2011, 89, 2369–2376. [Google Scholar] [CrossRef]
- Picard, C.; Frisson, C.; Faure, F.; Drettakis, G.; Kry, P.G. Advances in Modal Analysis Using a Robust and Multiscale Method. EURASIP J. Adv. Signal Process 2010, 2010, 392782. [Google Scholar] [CrossRef]
- Fu, Z.; He, J. Modal Analysis, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2001; ISBN 0 7506 5079 6. [Google Scholar]
- Wang, L.; Zhong, H. A Time Finite Element Method for Structural Dynamics. Appl. Math. Model. 2017, 41, 445–461. [Google Scholar] [CrossRef]
- Mercer, J.F.; Aglietti, G.S.; Kiley, A.M. Modal and Frequency Domain Based Techniques for Finite Element Model Correlation. In Proceedings of the COMPDYN 2015 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, 25–27 May 2015; pp. 191–208. [Google Scholar]
- El-Kafafy, M.; Peeters, B.; Geluk, T.; Guillaume, P. The MLMM Modal Parameter Estimation Method: A New Feature to Maximize Modal Model Robustness. Mech. Syst. Signal Process 2019, 120, 465–485. [Google Scholar] [CrossRef]
- Chandravanshi, M.L.; Mukhopadhyay, A.K. Modal Analysis of Structural Vibration. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Volume 14: Vibration, Acoustics and Wave Propagation, San Diego, CA, USA, 15–21 November 2013. [Google Scholar]
- Franzoni, F.; Ferreira, C.A.E.; Weaver, P. Numerical and Experimental Dynamic Analyses of a Postbuckled Box Beam. AIAA J. 2016, 54, 1987–2003. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y. A New Approach to Transient Vibration Analysis of Two-Dimensional Beam Structures at Medium and High Frequencies. J. Comput. Nonlinear Dyn. 2020, 15, 091006. [Google Scholar] [CrossRef]
- Capalbo, C.E.; De Gregoriis, D.; Tamarozzi, T.; Devriendt, H.; Naets, F.; Carbone, G.; Mundo, D. Parameter, Input and State Estimation for Linear Structural Dynamics Using Parametric Model Order Reduction and Augmented Kalman Filtering. Mech. Syst. Signal Process 2023, 185, 109799. [Google Scholar] [CrossRef]
- Ewins, D.J. Model Validation: Correlation for Updating. Sadhana—Acad. Proc. Eng. Sci. 2000, 25, 221–234. [Google Scholar] [CrossRef]
- Ereiz, S.; Duvnjak, I.; Fernando Jiménez-Alonso, J. Review of Finite Element Model Updating Methods for Structural Applications. Structures 2022, 41, 684–723. [Google Scholar] [CrossRef]
- Baghdasaryan, L.; Chen, W.; Buranathiti, T.; Cao, J. Model Validation via Uncertainty Propagation Using Response Surface Models. In Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 28th Design Automation Conference, Montreal, QC, Canada, 29 September–2 October 2002; pp. 981–992. [Google Scholar]
- Zang, C.; Schwingshackl, C.W.; Ewins, D.J. Model Validation for Structural Dynamic Analysis: An Approach to the Sandia Structural Dynamics Challenge. Comput. Methods Appl. Mech. Eng. 2008, 197, 2645–2659. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis. Int. J. Numer. Methods Eng. 1987, 24, 337–357. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Babuška, I. Advances in the p and H-p Versions of the Finite Element Method. A Survey; Springer: Berlin/Heidelberg, Germany, 1988; pp. 31–46. [Google Scholar] [CrossRef]
- Karpik, A.; Cosco, F.; Mundo, D. Higher-Order Hexahedral Finite Elements for Structural Dynamics: A Comparative Review. Machines 2023, 11, 326. [Google Scholar] [CrossRef]
- Hughes, T.; Evans, J.; Reali, A. Finite Element and NURBS Approximations of Eigenvalue, Boundary-Value, and Initial-Value Problems. Comput. Methods Appl. Mech. Eng. 2014, 272, 290–320. [Google Scholar] [CrossRef]
- Bartoň, M.; Calo, V.; Deng, Q.; Puzyrev, V. Generalization of the Pythagorean Eigenvalue Error Theorem and Its Application to Isogeometric Analysis. In Numerical Methods for PDEs. SEMA SIMAI Springer Series, Vol 15; Springer: Cham, Switzerland, 2018; pp. 147–170. [Google Scholar]
- Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T.; et al. A Modular Finite Element Methods Library. Comput. Math. Appl. 2021, 81, 42–74. [Google Scholar] [CrossRef]
- Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T. The Deal. II Finite Element Library: Design, Features, and Insights. Comput. Math. Appl. 2021, 81, 407–422. [Google Scholar] [CrossRef]
- Neto, M.; Amaro, A.; Roseiro, L.; Cirne, J.; Leal, R. Engineering Computation of Structures: The Finite Element Method; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bathe, K. Finite Element Procedures, 2nd ed.; Bathe, K.J., Ed.; Massachusetts Institute of Technology: Watertown, MA, USA, 2014; ISBN 0979004950. [Google Scholar]
- Abedian, A.; Parvizian, J.; Düster, A.; Khademyzadeh, H.; Rank, E. Performance of Different Integration Schemes in Facing Discontinuities in the Finite Cell Method. Int. J. Comput. Methods 2013, 10, 1350002. [Google Scholar] [CrossRef]
- Mousavi, S.; Sukumar, N. Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method. Comput. Methods Appl. Mech. Eng. 2010, 199, 3237–3249. [Google Scholar] [CrossRef]
- Venkateshan, S.; Swaminathan, P. Computational Methods in Engineering, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 0124167020. [Google Scholar]
- Wang, X.; Yuan, Z.; Jin, C. Weak Form Quadrature Element Method and Its Applications in Science and Engineering: A State-of-the-Art Review. Appl. Mech. Rev. 2017, 69, 030801. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M. Reduced Integration Technique in General Analysis of Plates and Shells. Int. J. Numer. Methods Eng. 1971, 3, 275–290. [Google Scholar] [CrossRef]
- Mao, Z.; Todd, M. Statistical Modeling of Frequency Response Function Estimation for Uncertainty Quantification. Mech. Syst. Signal Process 2013, 38, 333–345. [Google Scholar] [CrossRef]
- Banz, L.; Hernández, O.; Stephan, E.P. A Priori and a Posteriori Error Estimates for Hp-FEM for a Bingham Type Variational Inequality of the Second Kind. Comput. Math. Appl. 2022, 126, 14–30. [Google Scholar] [CrossRef]
- Hua, X.; Wen, Q.; Ni, Y.; Chen, Z. Assessment of Stochastically Updated Finite Element Models Using Reliability Indicator. Mech. Syst. Signal Process 2017, 82, 217–229. [Google Scholar] [CrossRef]
- Pintelon, R.; Guillaume, P.; Schoukens, J. Uncertainty Calculation in (Operational) Modal Analysis. Mech. Syst. Signal Process 2007, 21, 2359–2373. [Google Scholar] [CrossRef]
- Brigante, D.; Rainieri, C.; Fabbrocino, G. The Role of the Modal Assurance Criterion in the Interpretation and Validation of Models for Seismic Analysis of Architectural Complexes. In Proceedings of the X International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, 10–13 September 2017; Volume 199, pp. 3404–3409. [Google Scholar]
- Talebi, H.; Zi, G.; Silani, M.; Samaniego, E.; Rabczuk, T. A Simple Circular Cell Method for Multilevel Finite Element Analysis. J. Appl. Math. 2012, 2012, 526846. [Google Scholar] [CrossRef]
- Manring, L.; Schultze, J.; Zimmerman, S. Improving Magnitude and Phase Comparison Metrics for Frequency Response Functions Using Cross-Correlation and Log-Frequency Shifting. J. Sound Vib. 2022, 539, 117255. [Google Scholar] [CrossRef]
- Iliopoulos, A.; Shirzadeh, R.; Weijtjens, R.; Guillaume, P.; Van Hemelrijck, D.; Devriendt, C. A Modal Decomposition and Expansion Approach for Prediction of Dynamic Responses on a Monopile Offshore Wind Turbine Using a Limited Number of Vibration. Mech. Syst. Signal Process 2016, 68–69, 84–104. [Google Scholar] [CrossRef]
- Kressner, D. Numerical Methods for General and Structured Eigenvalue; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Adhikari, S.; Phani, A.S. Rayleigh’s Classical Damping Revisited. In Proceedings of the International Conference on Civil Engineering in the New Millennium: Opportunities and Challenges, Shibpur, India, 11–14 January 2007. [Google Scholar]
- Ma, F.; Imam, A.; Morzfeld, M. The Decoupling of Damped Linear Systems in Oscillatory Free Vibration. J. Sound Vib. 2009, 324, 408–428. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th ed.; Pearson: London, UK, 2007. [Google Scholar]
Young’s Modulus E, KPa | Density ρ, kg/mm3 | Poisson’s Ratio ν |
---|---|---|
500,000 | 2.13 × 10−6 | 0.46 |
Test Name | Shape Type | Integration Scheme | N. of Elements along the Edges | ||||||
---|---|---|---|---|---|---|---|---|---|
Hexa8-Int8 | Linear | 2 × 2 × 2 | 6 | 12 | 18 | 24 | 30 | 36 | 42 |
Hexa27-Int27 | Quadratic | 3 × 3 × 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 |
Hexa64-Int64 | Cubic | 4 × 4 × 4 | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
N. of DOFs | 1029 | 6591 | 20,577 | 46,875 | 89,373 | 151,959 | 238,521 |
Mode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
ω [Hz] | 257.9 | 258.0 | 331.2 | 630.6 | 662.4 | 662.4 | 803.3 | 943.6 | 979.6 | 1020 |
Mode 1 257.94, Hz | Mode 2 257.99, Hz | Mode 3 331.19, Hz | Mode 4 630.60, Hz | Mode 5 662.35, Hz |
Mode 6 662.36, Hz | Mode 7 803.32, Hz | Mode 8 943.59, Hz | Mode 9 979.63, Hz | Mode 10 1020, Hz |
Test Label | Shape Order | Integration Scheme | Elements along the Edge | Free DOFs | Case Study | ||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||
Hexa64-Int64 | Cubic | 4 × 4 × 4 | 6 × 6 × 6 | 19,494 | X | ||
Hexa27-Int27 | Quadratic | 3 × 3 × 3 | 12 × 12 × 12 | 45,000 | X | ||
Hexa64-Int64 | Cubic | 4 × 4 × 4 | 11 × 11 × 11 | 86,490 | X | ||
Hexa8-Int8 | Linear | 2 × 2 × 2 | 42 × 42 × 42 | 232,974 | X | X | |
Hexa27-Int27 | Quadratic | 3 × 3 × 3 | 21 × 21 × 21 | 232,974 | X | X | |
Hexa64-Int64 | Cubic | 4 × 4 × 4 | 14 × 14 × 14 | 232,974 | X |
Test Label | Case | Eπ | Control Points | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AB0 | A0C | A00 | ||||||||
1 | 2 | 3 | TRAC | FRAC | TRAC | FRAC | TRAC | FRAC | ||
Hexa64-Int64 | x | 0.0097 | 0.51 | 0.85 | 0.51 | 0.85 | 0.52 | 0.86 | ||
Hexa27-Int27 | x | 0.0097 | 0.50 | 0.85 | 0.50 | 0.85 | 0.51 | 0.87 | ||
Hexa8-Int8 | x | x | 0.0099 | 0.51 | 0.85 | 0.51 | 0.86 | 0.52 | 0.87 | |
Hexa64-Int64 | x | 0.0037 | 0.88 | 0.98 | 0.88 | 0.98 | 0.88 | 0.98 | ||
Hexa27-Int27 | x | x | 0.0034 | 0.90 | 0.98 | 0.90 | 0.98 | 0.90 | 0.98 | |
Hexa64-Int64 | x | 0.0015 | 0.98 | 1.00 | 0.98 | 1.00 | 0.98 | 1.00 |
Test Label | Case | Eπ | Assembling Time [s] | Eigenvalue Time [s] | Dynamic Time [s] | ||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | |||||
Hexa64-Int64 | x | 0.0097 | 3.06 | 2.85 | 96.42 | ||
Hexa27-Int27 | x | 0.0097 | 2.31 | 15.36 | 257.20 | ||
Hexa8-Int8 | x | x | 0.0099 | 11.45 | 1992.35 | 3187.15 | |
Hexa64-Int64 | x | 0.0037 | 14.37 | 40.23 | 718.30 | ||
Hexa27-Int27 | x | x | 0.0034 | 16.18 | 777.84 | 3015.62 | |
Hexa64-Int64 | x | 0.0015 | 46.15 | 727.47 | 2576.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpik, A.; Cosco, F.; Mundo, D. Dynamic Error Estimation in Higher-Order Finite Elements. Designs 2024, 8, 79. https://doi.org/10.3390/designs8040079
Karpik A, Cosco F, Mundo D. Dynamic Error Estimation in Higher-Order Finite Elements. Designs. 2024; 8(4):79. https://doi.org/10.3390/designs8040079
Chicago/Turabian StyleKarpik, Anna, Francesco Cosco, and Domenico Mundo. 2024. "Dynamic Error Estimation in Higher-Order Finite Elements" Designs 8, no. 4: 79. https://doi.org/10.3390/designs8040079
APA StyleKarpik, A., Cosco, F., & Mundo, D. (2024). Dynamic Error Estimation in Higher-Order Finite Elements. Designs, 8(4), 79. https://doi.org/10.3390/designs8040079