4D Printing: Research Focuses and Prospects
Abstract
:1. Introduction
- RQ1: What research hotspots have existed in 4D printing since its inception?
- RQ2: What have been the research trends in 4D printing in the last decade?
- RQ3: What is the current status of 4D printing applications?
- RQ4: How should 4D printing be developed further in the future?
2. Data Collection and Methods
2.1. Data Sources
2.2. Literature Analysis
2.3. Visualization Analysis Using Scientific Metrology
3. Results
3.1. Focuses and Trends Based on References
3.2. Focuses and Trends Based on Keywords
4. Prospects
4.1. Engineering Manufacturing
4.2. Biomedical
4.3. Food Printing
4.4. Cultural and Creative Life
5. Conclusions
5.1. New Findings
5.2. Theoretical and Practical Significance
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, K.V.; Hernandez, A. A review of additive manufacturing. Int. Sch. Res. Not. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019, 11, 1687814018822880. [Google Scholar] [CrossRef]
- Gardan, J. Additive manufacturing technologies: State of the art and trends. In Additive Manufacturing Handbook; Springer: Cham, Switzerland, 2017; pp. 149–168. [Google Scholar]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Boonhaijaroen, N.; Sitthi-amorn, P.; Srituravanich, W.; Suanpong, K.; Ekgasit, S.; Pengprecha, S. Alignment Control of Ferrite-Decorated Nanocarbon Material for 3D Printing. Micromachines 2024, 15, 763. [Google Scholar] [CrossRef] [PubMed]
- Kabirian, F.; Mela, P.; Heying, R. 4D printing applications in the development of smart cardiovascular implants. Front. Bioeng. Biotechnol. 2022, 10, 873453. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W. 4D printing: Technological and manufacturing renaissance. Macromol. Mater. Eng. 2022, 307, 2200003. [Google Scholar] [CrossRef]
- Langford, T.; Mohammed, A.; Essa, K.; Elshaer, A.; Hassanin, H. 4D printing of origami structures for minimally invasive surgeries using functional scaffold. Appl. Sci. 2020, 11, 332. [Google Scholar] [CrossRef]
- Aldawood, F.K. A comprehensive review of 4D printing: State of the arts, opportunities, and challenges. Actuators 2023, 12, 101. [Google Scholar] [CrossRef]
- Ali, M.H.; Abilgaziyev, A.; Adair, D. 4D printing: A critical review of current developments, and future prospects. Int. J. Adv. Manuf. Technol. 2019, 105, 701–717. [Google Scholar] [CrossRef]
- Biswas, M.C.; Chakraborty, S.; Bhattacharjee, A.; Mohammed, Z. 4D printing of shape memory materials for textiles: Mechanism, mathematical modeling, and challenges. Adv. Funct. Mater. 2021, 31, 2100257. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Umer, R.; Zolfagharian, A.; Bodaghi, M. 4D printing: Technological developments in robotics applications. Sens. Actuators A Phys. 2022, 343, 113670. [Google Scholar] [CrossRef]
- Navaf, M.; Sunooj, K.V.; Aaliya, B.; Akhila, P.P.; Sudheesh, C.; Mir, S.A.; George, J. 4D printing: A new approach for food printing; effect of various stimuli on 4D printed food properties. A comprehensive review. Appl. Food Res. 2022, 2, 100150. [Google Scholar] [CrossRef]
- Raina, A.; Haq, M.I.U.; Javaid, M.; Rab, S.; Haleem, A. 4D printing for automotive industry applications. J. Inst. Eng. Ser. D 2021, 102, 521–529. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, E.; An, S.-C.; Lim, Y.; Jun, Y.C. 3D and 4D printing for optics and metaphotonics. Nanophotonics 2020, 9, 1139–1160. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Noroozi, R.; Zolfagharian, A.; Bodaghi, M. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. J. Manuf. Process. 2022, 81, 759–797. [Google Scholar] [CrossRef]
- Cerbe, F.; Mahlstedt, D.; Sinapius, M.; Hühne, C.; Böl, M. Relationship between programming stress and residual strain in FDM 4D printing. Prog. Addit. Manufac. 2024, 9, 123–132. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Zhao, S.; Deng, Y.; Yu, Q.; Zeltmann, S.; Yin, S.; Ciston, J.; Ophus, C.; Asta, M.; et al. In situ observations and measurements of plastic deformation, phase transformations and fracture with 4D-STEM. Microsc. Microanal. 2021, 27 (Suppl. S1), 1494–1495. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; Shang, Q.; Li, F.; Hui, Y.; Fan, H. A method for investigating the springback behavior of 3D tubes. Int. J. Mech. Sci. 2017, 131, 191–204. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.; Liao, W. Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 2016, 25, 105034. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, B.; Su, B.; Shi, Y. Recent advances of 4D printing technologies toward soft tactile sensors. Front. Mater. 2021, 8, 658046. [Google Scholar] [CrossRef]
- Zeenat, L.; Zolfagharian, A.; Sriya, Y.; Sasikumar, S.; Bodaghi, M.; Pati, F. 4D printing for vascular tissue engineering: Progress and challenges. Adv. Mater. Technol. 2023, 8, 2300200. [Google Scholar] [CrossRef]
- Fu, P.; Li, H.; Gong, J.; Fan, Z.; Smith, A.T.; Shen, K.; Khalfalla, T.O.; Huang, H.; Qian, X.; McCutcheon, J.R.; et al. 4D printing of polymers: Techniques, materials, and prospects. Prog. Polym. Sci. 2022, 126, 101506. [Google Scholar] [CrossRef]
- Chen, X.; Han, S.; Wu, W.; Wu, Z.; Yuan, Y.; Wu, J.; Liu, C. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small 2022, 18, 2106824. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Yang, W.; Wang, R.; Gao, S.; Li, B.; Li, Q. 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl. Mater. Interfaces 2018, 10, 36435–36442. [Google Scholar] [CrossRef]
- Mohol, S.S.; Sharma, V. Functional applications of 4D printing: A review. Rapid Prototyp. J. 2021, 27, 1501–1522. [Google Scholar] [CrossRef]
- Manshor, M.R.; Alli, Y.A.; Anuar, H.; Ejeromedoghene, O.; Omotola, E.O.; Suhr, J. 4D printing: Historical evolution, computational insights and emerging applications. Mater. Sci. Eng. B 2023, 295, 116567. [Google Scholar] [CrossRef]
- Cui, H.; Zhu, W.; Miao, S.; Sarkar, K.; Zhang, L.G. 4D Printed Nerve Conduit with In Situ Neurogenic Guidance for Nerve Regeneration. Tissue Eng. Part A 2023, 30, 293–303. [Google Scholar] [CrossRef]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. 4D printing: Perspectives for the production of sustainable plastics for agriculture. Biotechnol. Adv. 2022, 54, 107785. [Google Scholar] [CrossRef]
- Sahafnejad-Mohammadi, I.; Karamimoghadam, M.; Zolfagharian, A.; Akrami, M.; Bodaghi, M. 4D printing technology in medical engineering: A narrative review. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 233. [Google Scholar] [CrossRef]
- Brown, R.J. Measuring measurement–What is metrology and why does it matter? Measurement 2021, 168, 108408. [Google Scholar] [CrossRef]
- Plant, A.; Hanisch, R. Reproducibility in science: A metrology perspective. Harv. Data Sci. Rev. 2020, 2. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Ordoudi, S.A.; Mantzouridou, F.T.; Nenadis, N.; Stelzl, T.; Rychlik, M.; Belc, N.; Zoani, C. Strategic priorities of the scientific plan of the European Research Infrastructure METROFOOD-RI for promoting metrology in food and nutrition. Foods 2022, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Chen, G.; Liu, C.; Ye, X.; Wang, S.; Dong, M.; Sun, M.; He, J.; Yu, X.; Ye, G.; et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 2021, 31, 2103920. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S. 4D printing: Recent advances and proposals in the food sector. Trends Food Sci. Technol. 2021, 110, 349–363. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurg. 2020, 137, 435–442.e4. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.; Feng, L.; Yang, W. Disruption risks in supply chain management: A literature review based on bibliometric analysis. Int. J. Prod. Res. 2020, 58, 3508–3526. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y. Visualization analysis of high-speed railway research based on CiteSpace. Transp. Policy 2020, 85, 1–17. [Google Scholar] [CrossRef]
- Wei, F.; Grubesic, T.H.; Bishop, B.W. Exploring the GIS knowledge domain using CiteSpace. Prof. Geograph. 2015, 67, 374–384. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X. Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Sood, S.K.; Rawat, K.S.; Kumar, D. Analytical mapping of information and communication technology in emerging infectious diseases using CiteSpace. Telemat. Inform. 2022, 69, 101796. [Google Scholar] [CrossRef] [PubMed]
- Sydney Gladman, A.; Matsumoto, E.; Nuzzo, R.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater. 2016, 15, 413–418. [Google Scholar] [CrossRef]
- Taylor, D.L.; in het Panhuis, M. Self-healing hydrogels. Adv. Mater. 2016, 28, 9060–9093. [Google Scholar] [CrossRef]
- Tibbits, S. 4D printing: Multi-material shape change. Archit. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Ge, Q.; Sakhaei, A.H.; Lee, H.; Dunn, C.K.; Fang, N.X.; Dunn, M.L. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 2016, 6, 31110. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Momeni, F.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Huang, J.; Xia, S.; Li, Z.; Wu, X.; Ren, J. Applications of four-dimensional printing in emerging directions: Review and prospects. J. Mater. Sci. Technol. 2021, 91, 105–120. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T. Advances in 4D printing: Materials and applications. Adv. Funct. Mater 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Luo, F.; Sun, T.L.; Nakajima, T.; Kurokawa, T.; Ihsan, A.B.; Li, X. Free reprocessability of tough and self-healing hydrogels based on polyion complex. ACS Macro Lett. 2015, 4, 961–964. [Google Scholar] [CrossRef]
- Ge, Q.; Qi, H.J.; Dunn, M.L. Active materials by four-dimension printing. Appl. Phys. Lett. 2013, 103, 131901. [Google Scholar] [CrossRef]
- Ge, Q.; Dunn, C.K.; Qi, H.J.; Dunn, M.L. Active origami by 4D printing. Smart Mater. Struct. 2014, 23, 094007. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Liu, Y.; Leng, J. 4D printed shape memory polymers and their structures for biomedical applications. Sci. China Technol. Sci. 2020, 63, 545–560. [Google Scholar] [CrossRef]
- Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H.J.; Dunn, M.L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3, e1602890. [Google Scholar] [CrossRef]
- Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016, 34, 746–756. [Google Scholar] [CrossRef]
- Bakarich, S.E.; Gorkin, R.; Spinks, G.M. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromol. Rapid Commun. 2015, 36, 1211–1217. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Kuang, X.; Chen, K.; Dunn, C.K.; Wu, J.; Li, V.C.; Qi, H.J. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 2018, 10, 7381–7388. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Yan, W.-C.; Lu, W.F.; Wang, C.-H.; Fuh, J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 2018, 132, 296–332. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Burroughs, J.J.; Boothby, J.M.; Kim, H.; Shankar, M.R.; Ware, T.H. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 2017, 9, 37332–37339. [Google Scholar] [CrossRef]
- Bajpai, A.; Baigent, A.; Raghav, S.; Brádaigh, C.Ó.; Koutsos, V.; Radacsi, N. 4D printing: Materials, technologies, and future applications in the biomedical field. Sustainability 2020, 12, 10628. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Sun, Y.; Phuhongsung, P. Improving 3D/4D printing characteristics of natural food gels by novel additives: A review. Food Hydrocoll. 2022, 123, 107160. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv. Ind. Eng. Polym. Res. 2021, 4, 301–311. [Google Scholar] [CrossRef]
- Subeshan, B.; Baddam, Y.; Asmatulu, E. Current progress of 4D-printing technology. Prog. Addit. Manufac. 2021, 6, 495–516. [Google Scholar] [CrossRef]
- Ntouanoglou, K.; Stavropoulos, P.; Mourtzis, D. 4D printing prospects for the aerospace industry: A critical review. Procedia Manuf. 2018, 18, 120–129. [Google Scholar] [CrossRef]
- Shao, L.-H.; Zhao, B.; Zhang, Q.; Xing, Y.; Zhang, K. 4D printing composite with electrically controlled local deformation. Extrem. Mech. Lett. 2020, 39, 100793. [Google Scholar] [CrossRef]
- Zhai, F.; Feng, Y.; Li, Z.; Xie, Y.; Ge, J.; Wang, H.; Qiu, W.; Feng, W. 4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring. Matter 2021, 4, 3313–3326. [Google Scholar] [CrossRef]
- Ahmed, A.; Arya, S.; Gupta, V.; Furukawa, H.; Khosla, A. 4D printing: Fundamentals, materials, applications and challenges. Polymer 2021, 228, 123926. [Google Scholar] [CrossRef]
- Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2017, 38, 1600628. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, H.; Esworthy, T.; Mei, D.; Wang, Y.; Zhang, L.G. Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv. Mater. 2022, 34, 2109198. [Google Scholar] [CrossRef]
- Vinnakota, M.; Bellur, K.; Starnes, S.L.; Schulz, M.J. Scaling a Hydraulic Motor for Minimally Invasive Medical Devices. Micromachines 2024, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Osouli-Bostanabad, K.; Masalehdan, T.; Kapsa, R.M.; Quigley, A.; Lalatsa, A.; Bruggeman, K.F.; Franks, S.J.; Williams, R.J.; Nisbet, D.R. Traction of 3D and 4D printing in the healthcare industry: From drug delivery and analysis to regenerative medicine. ACS Biomater. Sci. Eng. 2022, 8, 2764–2797. [Google Scholar] [CrossRef] [PubMed]
- Kamolz, L.-P.; Kotzbeck, P.; Schintler, M.; Spendel, S. Skin regeneration, repair, and reconstruction: Present and future. Eur. Surg. 2022, 54, 163–169. [Google Scholar] [CrossRef]
- Ghazal, A.F.; Zhang, M.; Liu, Z. Spontaneous color change of 3D printed healthy food product over time after printing as a novel application for 4D food printing. Food Bioprocess Technol. 2019, 12, 1627–1645. [Google Scholar] [CrossRef]
- Farid, M.I.; Wu, W.; Liu, X.; Wang, P. Additive manufacturing landscape and materials perspective in 4D printing. Int. J. Adv. Manuf. Technol. 2021, 115, 2973–2988. [Google Scholar] [CrossRef]
- Manaia, J.P.; Cerejo, F.; Duarte, J. Revolutionising textile manufacturing: A comprehensive review on 3D and 4D printing technologies. Fash. Text. 2023, 10, 20. [Google Scholar] [CrossRef]
- Leist, S.K.; Gao, D.; Chiou, R.; Zhou, J. Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys. Prototyp. 2017, 12, 290–300. [Google Scholar] [CrossRef]
- Franco Urquiza, E.A. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing—A Review. Polymers 2024, 16, 700. [Google Scholar] [CrossRef]
- Mallakpour, S.; Tabesh, F.; Hussain, C.M. 3D and 4D printing: From innovation to evolution. Adv. Colloid Interface Sci. 2021, 294, 102482. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Ford, M.J.; Searles, K.; Majidi, C.; Ware, T.H. 4D-Printable liquid metal–liquid crystal elastomer composites. ACS Appl. Mater. Interfaces 2020, 13, 12805–12813. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Durran, L.; Gharaie, S.; Rolfe, B.; Kaynak, A.; Bodaghi, M. 4D printing soft robots guided by machine learning and finite element models. Sens. Actuators A Phys. 2021, 328, 112774. [Google Scholar] [CrossRef]
Search Field | Sum. | Research Papers | Review Paper | Conference Papers | Editorial Material | Book Reviews | Other |
---|---|---|---|---|---|---|---|
TS1 | 2054 | 1393 | 463 | 146 | 28 | 3 | 21 |
TS2 | 1064 | 771 | 180 | 69 | 19 | 3 | 22 |
Document | Theme | Citations | Links |
---|---|---|---|
Gladman et al. [43] | Biomimetic printing | 2088 | 176 |
Taylor [44] | Self-Healing hydrogels | 968 | 10 |
Tibbits [45] | Programmable materials | 814 | 141 |
Ge et al. [46] | Tailorable features | 742 | 113 |
Parandoush et al. [47] | Review: methods | 723 | 14 |
Momeni et al. [48] | Review: concepts and tools | 663 | 122 |
Xia et al. [49] | Review: emerging directions | 611 | 27 |
Kuang et al. [50] | Shape-shifting materials | 588 | 109 |
Luo et al. [51] | Polyion Complex | 552 | 7 |
Ge et al. [52] | Programmed action | 550 | 116 |
Ge et al. [53] | Origami | 524 | 99 |
Li et al. [54] | Review: biomedical | 479 | 29 |
Ding et al. [55] | Active composite materials | 477 | 94 |
Gao et al. [56] | Bioprinting | 421 | 50 |
Bakarich et al. [57] | Thermally Actuating Hydrogels | 367 | 82 |
Pan et al. [58] | Artificial intelligence | 360 | 1 |
Kuang et al. [59] | novel ink | 353 | 50 |
Vijayavenkataraman et al. [60] | Organ transplantation | 350 | 3 |
Ambulo et al. [61] | Liquid Crystal Elastomers | 340 | 45 |
Cluster Name | Emerging Applications | 4D-Printed Shape Memory Polymers | 4D-Printed Active Composite Structures |
---|---|---|---|
Theme | Comparative review | Polymeric material | Robotics application |
Critical review | Smart polymeric composite | Active composite material | |
Typical application | Tissue engineering | On-demand local actuation | |
Biological interface | Controlled sequential shape | Permanent shape reconfigurability | |
Emerging direction | Advanced properties | Graphene-based polymer bilayer | |
Shape memory material | Comprehensive review | Ultrafast inverse design | |
Fabrication material | Biomedical application | Controllable deformation design | |
Advance | Democratizing 4D printing | Bioinspired 4D printing | |
Additive manufacturing | Loading mode | 3D printing | |
Tissue engineering development | Shape memory epoxies | ||
Dawn | Reentrant honeycomb |
Cluster lD | Size | Silhouette | Label (LLR) | Theme | Average Year |
---|---|---|---|---|---|
0 | 241 | 0.767 | Emerging application | Application areas | 2020 |
1 | 107 | 0.861 | 4D printing shape memory polymer | Shape memory polymer | 2015 |
2 | 104 | 0.699 | 4D-printed active composite structure | Composite properties and structures | 2018 |
3 | 102 | 0.726 | 3D printing | Medical device | 2017 |
4 | 68 | 0.876 | 3D bioprinting | Hydrogel | 2015 |
5 | 58 | 0.934 | Liquid crystal elastomer | Bionic material | 2019 |
6 | 48 | 0.920 | Geometry-driven finite element | 4D programming | 2013 |
7 | 46 | 0.885 | Biomedical application | Biomedical | 2019 |
8 | 35 | 0.976 | 6D printing | Future trend | 2019 |
9 | 29 | 0.982 | Controlled sequential shape | Programming method | 2011 |
10 | 18 | 0.995 | Lithography-based 4D nanoprinting | Printing technology | 2013 |
11 | 16 | 0.997 | Loading mode | Design | 2022 |
12 | 16 | 0.963 | Polyelectrolyte | Smart materials | 2012 |
15 | 6 | 0.996 | Optical 3D printing | Optical applications | 2014 |
16 | 6 | 0.998 | Auxetic metamaterial | Artificial composite structural material | 2017 |
17 | 6 | 0.985 | Shape memory epoxies | Advanced materials | 2016 |
20 | 3 | 0.998 | Robotics application | Robotics | 2020 |
Keyword | Occurrences | Total Link Strength |
---|---|---|
4D printing | 1025 | 1680 |
3D printing | 382 | 753 |
3D | 296 | 752 |
additive manufacturing | 268 | 657 |
fabrication | 248 | 627 |
design | 214 | 503 |
composites | 183 | 476 |
scaffolds | 182 | 472 |
polymers | 182 | 468 |
mechanical-properties | 178 | 404 |
behavior | 154 | 361 |
smart materials | 150 | 434 |
hydro-gels | 133 | 298 |
shape memory polymers | 129 | 292 |
shape memory polymer | 107 | 241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Liu, J. 4D Printing: Research Focuses and Prospects. Designs 2024, 8, 106. https://doi.org/10.3390/designs8060106
Jin Y, Liu J. 4D Printing: Research Focuses and Prospects. Designs. 2024; 8(6):106. https://doi.org/10.3390/designs8060106
Chicago/Turabian StyleJin, Yuran, and Jiahui Liu. 2024. "4D Printing: Research Focuses and Prospects" Designs 8, no. 6: 106. https://doi.org/10.3390/designs8060106
APA StyleJin, Y., & Liu, J. (2024). 4D Printing: Research Focuses and Prospects. Designs, 8(6), 106. https://doi.org/10.3390/designs8060106