Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects
Abstract
:1. Introduction
2. The 3DEC Models for Shear Testing of Anisotropic Structural Planes
2.1. Overview of 3DEC
2.2. Model Establishment and Grid Division
2.3. Material Assignment and Boundary Condition Setting
2.4. Analysis and Accuracy Verification of Numerical Results of the Direct Shear Test on the Anisotropic Structural Plane
3. Numerical Shear Testing of Anisotropic Structural Planes with Size Effect
3.1. Design of Direct Shear Numerical Test
3.2. Size Effect on Peak Shear Strength of Anisotropic Structural Planes
3.3. Effect of Normal Stress on Peak Shear Strength of Anisotropic Structural Planes
3.4. Effect of Roughness on Peak Shear Strength of Anisotropic Structural Planes
4. BP Neural Network Model for Predicting Peak Shear Strength of Anisotropic Structural Planes
4.1. Overview of BP Neural Network
4.2. Design of BP Neural Network
4.3. Prediction Results of Peak Shear Strength
5. Conclusions
- (1)
- A direct shear test model for rock mass with anisotropic structural planes is established using 3DEC. By comparing the numerical and laboratory test results, it has been found that the error in peak shear strength was generally within 10%. Additionally, the shear displacement–stress curve obtained from the numerical tests closely resembles the curve from the laboratory tests, effectively replicating the shear process of the structural plane sample;
- (2)
- The peak shear strength of anisotropic structural planes is negatively correlated with size. When the JRC is 4 to 6, the peak shear strength decreases by 0.022 to 0.045 MPa for every additional 1 cm in size with different normal stresses. When the JRC is from 8 to 10, the peak shear strength decreases by 0.025 to 0.053 MPa for every additional 1 cm in size with different normal stresses. When the JRC is 14 to 16, the peak shear strength decreases by 0.027 to 0.053 MPa for every additional 1 cm in size with different normal stresses. When the JRC is 18 to 20, the peak shear strength decreases by 0.031 to 0.066 MPa for every additional 1 cm in size with different normal stresses;
- (3)
- The peak shear strength of anisotropic structural planes is positively correlated with normal stress and roughness. When the JRC is 4 to 6, the peak shear strength increases by 0.253 to 0.904 MPa for each 1 MPa increase in normal stress with different sizes. When the JRC is 8 to 10, the peak shear strength increases by 0.473 to 1.049 MPa for each 1 MPa increase in normal stress with different sizes. When the JRC is from 14 to 16, the peak shear strength increases by 0.571 to 1.093 MPa for each 1 MPa increase in normal stress with different sizes. When the JRC is from 18 to 20, the peak shear strength increases by 0.580 to 1.287 MPa for each 1 MPa increase in normal stress with different sizes. Under identical size and normal stress conditions, the shear strength of the large structural plane with a high JRC is consistently the highest;
- (4)
- The optimal number of training steps of the BP neural network model is 12. The RMSE of the BP neural network model is less than 0.5, and the R2 value is greater than 0.94, which indicates that the predicted results align closely with the actual test results. Therefore, this model can effectively predict the peak shear strength of the anisotropic structural planes within rock masses.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Yang, Q.; Liu, Y. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station. J. Rock Mech. Geotech. 2016, 8, 398–404. [Google Scholar] [CrossRef]
- Zhong, J.H.; Yang, X. Pseudo-dynamic stability of rock slope considering Hoek-Brown strength criterion. Acta Geotech. 2022, 17, 2481–2494. [Google Scholar] [CrossRef]
- Miao, C.; Liu, J.; Gao, M.; Li, J.; Pang, D.; Yuan, K. Insight into the overload failure mechanism of anchored slope with weak structural planes. Bull. Eng. Geol. Environ. 2024, 83, 390. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Wu, S.C.; Cheng, H.Y.; Han, L.; Chang, X.; Fu, X. Experimental study on the influence of structural planes on rockbursts in deep-buried hard-rock tunnels. Rock Mech. Rock Eng. 2024, 57, 8057–8080. [Google Scholar] [CrossRef]
- Vick, L.M.; Böhme, M.; Rouyet, L.; Bergh, S.G.; Corner, G.D.; Lauknes, T.R. Structurally controlled rock slope deformation in Northern Norway. Landslides 2020, 17, 1745–1776. [Google Scholar] [CrossRef]
- Zhao, L.H.; Yu, C.H.; Cheng, X.; Zuo, S.; Jiao, K. A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion. Int. J. Rock Mech. Min. 2020, 136, 104487. [Google Scholar] [CrossRef]
- Tan, X.; Ren, Y.K.; Li, T.L.; Zhou, S.H.; Zhang, J.C.; Zhou, S.K. In-situ direct shear test and numerical simulation of slate structural planes with thick muddy interlayer along bedding slope. Int. J. Rock Mech. Min. 2021, 143, 104791. [Google Scholar] [CrossRef]
- Deng, D.P. Limit equilibrium analysis on the stability of rock wedges with linear and nonlinear strength criteria. Int. J. Rock Mech. Min. 2021, 148, 104967. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xing, A.; Leng, Y.; Bilal, M.; Zhang, Y.; Jin, K.; He, J. Investigation of characteristics of long runout landslides based on the multi-source data collaboration: A case study of the Shuicheng basalt landslide in Guizhou, China. Rock Mech. Rock Eng. 2021, 54, 3783–3798. [Google Scholar] [CrossRef]
- He, K.; Liu, B.; Hu, X.W.; Zhou, R.; Xi, C.; Ma, G.; Han, M.; Li, Y.; Luo, G. Rapid characterization of landslide-debris flow chains of geologic hazards using multi-method investigation: Case study of the Tiejiangwan LDC. Rock Mech. Rock Eng. 2022, 55, 5183–5208. [Google Scholar] [CrossRef]
- Wu, K.; Yi, X.B.; Fu, X.D.; Zhang, L.; Kang, J.Y.; Yuan, Q.; Shao, J. Geohazard development rules and post disaster reconstruction strategies of Hailuogou scenic road in the epicenter of Luding earthquake. Chin. J. Rock Mech. Eng. 2024, 43, 1909–1922. (In Chinese) [Google Scholar]
- Huang, M.; Luo, Z.Y.; Du, S.G. Experimental study of sampling representativeness of structural plane of rock model. Chin. J. Rock Mech. Eng. 2013, 32, 2008–2014. (In Chinese) [Google Scholar]
- Ming, H.J.; Liu, C.Y.; Wang, Y.X. Numerical simulation of size effect of rock structural plane. Chin. J. Under Space Eng. 2016, 12, 387–391. (In Chinese) [Google Scholar]
- Barton, N. Review of a new shear strength criterion for rock joint. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Tse, R.; Cruden, D.M. Estimating joint roughness coefficients. Int. J. Rock Mech. Min. Geol. Abs. 1979, 16, 303–307. [Google Scholar] [CrossRef]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Rock Mech. Rock Eng. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Ünlüsoy, D.; Süzen, M.L. A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density. Int. J. Rock Mech. Min. 2020, 125, 104156. [Google Scholar] [CrossRef]
- Barton, N.; Bandis, S. Effects of block size on the shear behavior of jointed rock. In Proceedings of the 23rd US Symposium on Rock Mechanics, Berkeley, CA, USA, 25–27 August 1982; pp. 739–760. [Google Scholar]
- Du, X.F.; Du, S.G. Concise formula of Barton’s straight edge method for joint roughness coefficient. J. Eng. Geol. 2008, 16, 196–200. (In Chinese) [Google Scholar]
- Stigsson, M.; Ivars, D.M. A novel conceptual approach to objectively determine JRC using fractal dimension and asperity distribution of mapped fracture traces. Rock Mech. Rock Eng. 2019, 52, 1041–1054. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Jiang, Y.; Liu, P.; Guo, Y.; Liu, J.; Ma, M.; Wang, K.; Wang, S. Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses. Rock Mech. Rock Eng. 2018, 51, 1885–1906. [Google Scholar] [CrossRef]
- Feng, W.; Zou, D.; Wang, T.; Qiao, C.; Xu, S. Study on a nonlinear shear damage constitutive of structural plane and application of discrete element. Comput. Geotech. 2023, 155, 105190. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, H.; Wang, Z.; Zhang, L.; Kong, L.; Li, S.; Zhang, C. Experimental study on the prediction of rockburst hazards induced by dynamic structural plane shearing in deeply buried hard rock tunnels. Int. J. Rock Mech. Min. 2016, 86, 210–223. [Google Scholar] [CrossRef]
- Du, S.G.; Lyu, Y.J.; Luo, Z.Y.; Huang, M. Combined test system for size effect of rock joint shear strength and its primary application research. Chin. J. Rock Mech. Eng. 2021, 40, 1337–1349. (In Chinese) [Google Scholar]
- Mashhadiali, N.; Molaei, F. Theoretical and experimental investigation of a shear failure model for anisotropic rocks using direct shear test. Int. J. Rock Mech. Min. 2023, 170, 105561. [Google Scholar] [CrossRef]
- Yin, Q.; Zhu, C.; Wu, J.; Pu, H.; Wang, Q.; Zhang, Y.; Jing, H.; Deng, T. Shear sliding of rough-walled fracture surfaces under unloading normal stress. J. Rock Mech. Geotech. 2023, 15, 2658–2675. [Google Scholar] [CrossRef]
- Cao, X.; Wu, M.; Liu, S.; Fang, L.; Wang, B. Deformation simulation of steep over-dip stratified surrounding rock for small angle between tunnel and rock strike. J. Mt. Sci. Eng. 2013, 31, 385–390. [Google Scholar]
- Yin, D.W.; Chen, S.J.; Chen, B.; Liu, X. Strength and failure characteristics of the rock-coal combined body with single joint in coal. Geomech. Eng. 2018, 15, 1113–1124. [Google Scholar] [CrossRef]
- Le, H.L.; Wei, J.H.; Sun, S.R.; Zhang, C.C. Cracking behaviors and strength of rock-like samples with steps of different geometries under shear stress. J. Mt. Sci. Eng. 2021, 18, 1352–1370. [Google Scholar] [CrossRef]
- Renaud, S.; Bouaanani, N.; Miquel, B. Experimental, analytical, and finite element assessment of the shear strength of concrete-rock interfaces at different scales. Int. J. Numer. Anal. Met. 2021, 45, 1238–1259. [Google Scholar] [CrossRef]
- Greco, D.O.; Ferrero, A.M.; Oggeri, C. Experimental and analytical interpretation of the behaviour of laboratory tests on composite specimens. Int. J. Rock Mech. Min. 1993, 30, 1539–1543. [Google Scholar] [CrossRef]
- Ban, L.R.; Zhu, C.; Hou, Y.H.; Du, W.S.; Qi, C.Z.; Lu, C.S. A method to predict the peak shear strength of rock joints based on machine learning. J. Mt. Sci. Eng. 2023, 20, 3718–3731. [Google Scholar] [CrossRef]
- Xu, Z.H.; Guo, G.; Sun, Q.C.; Wang, Q.; Zhang, G.D.; Ye, R.Q. Structural plane recognition from three-dimensional laser scanning points using an improved region-growing algorithm based on the robust randomized Hough transform. J. Mt. Sci. Eng. 2023, 20, 3376–3391. [Google Scholar] [CrossRef]
- Zhou, S.; Lei, Y.; Zhang, Z.-X.; Luo, X.; Aladejare, A.; Ozoji, T. Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties. Nondestruct. Test. Eva. 2024, 40, 116–139. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.-X.; Luo, X.; Huang, Y.; Yu, Z.; Yang, X. Predicting dynamic compressive strength of frozen-thawed rocks by characteristic impedance and data-driven methods. J. Rock Mech. Geotech. 2024, 16, 2591–2606. [Google Scholar] [CrossRef]
- Mahendra, S.; Bhawani, S. Laboratory and Numerical Modelling of a Jointed Rock Mass. In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 1–6 October 2008; ISBN 978-162276176-0. [Google Scholar]
- Chen, S.; Qiao, C.S.; Yang, Z.; Qiao, C. Application of stochastic joint network simulation to composite strata of shallow-buried long-span metro tunnels. Bull. Eng. Geol. Environ. 2020, 79, 2085–2107. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, Y.; Min, M.; Wang, X. Study on acoustic emission characteristics during shear deformation of rock structural planes based on particle flow code. Comput. Part Mech. 2024, 11, 105–118. [Google Scholar] [CrossRef]
- Wang, T.T.; Huang, T.H. Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous Joints: Theory analysis and numerical modeling. Rock Mech. Rock Eng. 2014, 47, 643–657. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Wang, C.; Wang, M. Macroscopic and microscopic analysis of particle flow in direct shear mechanical characteristics of rock structural surface. Chin. J. Comput. Mech. 2023, 40, 237–248. (In Chinese) [Google Scholar]
- Zhou, J.L. Study on Shear Characteristics of Rock-Mortar Heterogeneous Structural Plane. Ph.D. Thesis, Nanchang University, Nanchang, China, 2022. (In Chinese). [Google Scholar]
- Kang, Y.S.; Hou, C.C.; Liu, B.; Bai, W. Influence of water content on the shear strength of rock joints with clay-rich fillings. Rock Mech. Rock Eng. 2023, 56, 1437–1449. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.Y.; Liu, Z.; Bao, M. An experimental study of the effects of filling degree on shear behavior and acoustic emission characteristics of kaolinite-filled granite joints. Ksce. J. Civ. Eng. 2024, 28, 2966–2981. [Google Scholar] [CrossRef]
- Krahn, J.; Morgenstern, N.R. The ultimate frictional resistance of rock discontinuities. Int. J. Rock Mech. Min. 1979, 16, 127–133. [Google Scholar] [CrossRef]
- He, Z.G.; Wilson, S.B.; Monjezi, M.; Tran, T.T. Estimating brazilian tensile strength of granite rocks using metaheuristic algorithms-based self-organizing neural networks. Rock Mech. Rock Eng. 2024, 57, 4653–4668. [Google Scholar] [CrossRef]
Materials | Density (g/cm3) | Elasticity Modulus (GPa) | Bulk Modulus (GPa) | Shear Modulus (GPa) | Cohesion (MPa) | Basic Friction Angle (°) | Tensile Strength (MPa) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|
Sandstone | 2.42 | 18.85 | 10.47 | 7.86 | 3.07 | 29.60 | 2.13 | 95.55 |
Granite | 2.81 | 57.92 | 38.61 | 23.17 | 10.33 | 35.00 | 6.47 | 261.55 |
Cement mortar | 2.11 | 22.33 | 12.41 | 9.30 | 5.03 | 31.50 | 1.81 | 32.61 |
Anisotropic Structural Plane Types | JRC | Normal Stress (MPa) | Peak Shear Strength (MPa) | Error (%) | |
---|---|---|---|---|---|
Laboratory Test | Numerical Test | ||||
Sandstone-Cement | R1(JRC = 0) | 0.5 | 0.26 | 0.26 | 2.48 |
1.0 | 0.61 | 0.65 | 6.01 | ||
2.0 | 1.05 | 1.14 | 8.40 | ||
3.0 | 1.77 | 1.89 | 6.23 | ||
R2(JRC = 2.8) | 0.5 | 0.41 | 0.45 | 10.30 | |
1.0 | 0.82 | 0.82 | 0.19 | ||
2.0 | 1.43 | 1.38 | 3.60 | ||
3.0 | 2.04 | 2.20 | 7.60 | ||
R3(JRC = 10.8) | 0.5 | 0.58 | 0.55 | 5.50 | |
1.0 | 1.15 | 1.30 | 12.80 | ||
2.0 | 1.99 | 2.01 | 1.30 | ||
3.0 | 3.06 | 2.84 | 7.30 | ||
Granite-Cement | R1(JRC = 0) | 0.5 | 0.29 | 0.31 | 9.10 |
1.0 | 0.64 | 0.68 | 6.50 | ||
2.0 | 1.20 | 1.30 | 8.10 | ||
3.0 | 1.88 | 2.07 | 10.50 | ||
R2(JRC = 2.8) | 0.5 | 0.36 | 0.37 | 3.70 | |
1.0 | 0.66 | 0.68 | 2.90 | ||
2.0 | 1.35 | 1.35 | 0.17 | ||
3.0 | 2.07 | 2.06 | 0.54 | ||
R3(JRC = 10.8) | 0.5 | 0.52 | 0.55 | 5.90 | |
1.0 | 1.13 | 1.27 | 12.30 | ||
2.0 | 2.29 | 2.37 | 3.40 | ||
3.0 | 2.73 | 2.62 | 4.10 |
Size (cm) | Roughness | Normal Stress (MPa) | ||||
---|---|---|---|---|---|---|
0.5 | 1 | 2 | 3 | 5 | ||
10 | B1 | 2.76 | 2.95 | 4.21 | 4.83 | 6.83 |
B2 | 3.15 | 4.12 | 4.61 | 6.99 | 7.87 | |
B3 | 3.59 | 4.76 | 6.77 | 7.35 | 8.51 | |
B4 | 4.15 | 5.16 | 6.81 | 8.43 | 9.94 | |
30 | B1 | 2.41 | 2.85 | 3.53 | 4.55 | 5.92 |
B2 | 2.63 | 3.01 | 4.07 | 5.65 | 5.97 | |
B3 | 3.46 | 4.37 | 4.81 | 5.90 | 6.84 | |
B4 | 3.87 | 4.82 | 5.86 | 6.02 | 7.31 | |
50 | B1 | 1.55 | 2.07 | 2.92 | 4.01 | 5.15 |
B2 | 2.01 | 2.19 | 3.59 | 4.90 | 5.49 | |
B3 | 2.95 | 3.40 | 3.97 | 5.28 | 5.66 | |
B4 | 3.12 | 3.72 | 4.08 | 5.47 | 6.67 | |
70 | B1 | 1.01 | 1.26 | 2.34 | 2.68 | 3.05 |
B2 | 1.04 | 1.55 | 2.75 | 3.48 | 3.54 | |
B3 | 1.35 | 1.73 | 3.23 | 4.58 | 5.45 | |
B4 | 1.50 | 2.28 | 3.69 | 5.13 | 5.79 | |
100 | B1 | 0.79 | 0.86 | 1.54 | 1.73 | 1.93 |
B2 | 0.94 | 1.42 | 2.41 | 2.71 | 3.07 | |
B3 | 1.20 | 1.62 | 2.54 | 3.28 | 3.77 | |
B4 | 1.36 | 1.90 | 2.87 | 3.72 | 3.97 |
Number of Structural Planes | Amplitude of Fluctuation | JRC |
---|---|---|
B1 | 0.17 | 0.67 |
B2 | 0.65 | 2.69 |
B3 | 1.26 | 5.24 |
B4 | 1.60 | 6.65 |
B5 | 2.27 | 9.39 |
B6 | 2.73 | 11.25 |
B7 | 3.37 | 13.79 |
B8 | 3.88 | 15.76 |
B9 | 4.26 | 17.21 |
B10 | 4.76 | 19.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-B.; Zou, W.-H.; Zhang, J.-L.; Li, G. Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects. Designs 2025, 9, 17. https://doi.org/10.3390/designs9010017
Ma W-B, Zou W-H, Zhang J-L, Li G. Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects. Designs. 2025; 9(1):17. https://doi.org/10.3390/designs9010017
Chicago/Turabian StyleMa, Wei-Bin, Wen-Hao Zou, Jin-Long Zhang, and Gan Li. 2025. "Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects" Designs 9, no. 1: 17. https://doi.org/10.3390/designs9010017
APA StyleMa, W.-B., Zou, W.-H., Zhang, J.-L., & Li, G. (2025). Prediction of Shear Strength in Anisotropic Structural Planes Considering Size Effects. Designs, 9(1), 17. https://doi.org/10.3390/designs9010017