The Structural Diagnosis of Existing RC Buildings: The Role of Nondestructive Tests in the Case of Low Concrete Strength
Abstract
:1. Introduction
2. Case Study
3. Direct Tests on Materials
3.1. Compression Test on Cylindrical Concrete Specimens
3.2. Tensile Test on Steel Reinforcement
4. Indirect Test Methods
4.1. Pull-Out Method
4.2. Ultrasonic Pulse Velocity Method
4.3. SonReb Combined Method
5. Tomography on Structural Elements
6. Experimental Tests on Structural Elements
6.1. Cyclic Axial Compression Test
6.2. Three-Point Bending Test
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Breysse, D. Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining ndt methods. Constr. Build. Mater. 2012, 33, 139–163. [Google Scholar] [CrossRef]
- Amini, K.; Jalalpour, M.; Delatte, N. Advancing concrete strength prediction using non-destructive testing: Development and verification of a generalizable model. Constr. Build. Mater. 2016, 102, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Ivanchev, I.Y.; Slavchev, V.S. Experimental determination of homogeneity, compressive strength and modulus of elasticity of concrete in reinforced concrete elements by non-ultrasonic pulse velocity method. In Proceedings of the 16th International Conference on New Trends in Statics and Dynamics of Buildings, Bratislava, Slovakia, 18–19 October 2018. [Google Scholar]
- Giannini, R.; Sguerri, L.; Paolacci, F.; Alessandri, S. Assessment of concrete strength combining direct and ndt measures via bayesian inference. Eng. Struct. 2014, 64, 68–77. [Google Scholar] [CrossRef]
- Masi, A. La stima della resistenza del calcestruzzo in situ mediante prove distruttive e non distruttive. G. Prove Distr. Monit. Diagn. 2005, 1, 2005. [Google Scholar]
- Breysse, D.; Balayssac, J.P.; Biondi, S.; Corbett, D.; Goncalves, A.; Grantham, M.; Luprano, V.A.; Masi, A.; Monteiro, A.V.; Sbartai, Z.M. Recommendation of RILEM TC249-ISC on non destructive in situ strength assessment of concrete. Mater. Struct. 2019, 52, 71. [Google Scholar] [CrossRef]
- EN 13791: 2019. Assessment of In-Situ Compressive Strength in Structures and Precast Concrete Components; European Commettee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- Lavorato, D.; Bergami, A.V.; Fiorentino, G.; Fiore, A.; Santini, S.; Nuti, C. Experimental tests on existing RC beams strengthened in flexure and retrofitted for shear by C-FRP in presence of negative moments. Int. J. Adv. Struct. Eng. 2018, 10, 212–232. [Google Scholar] [CrossRef] [Green Version]
- Nuti, C.; Santini, S.; Sguerri, L. Experimental tests on FRP shear retrofitted RC beams. In Proceedings of the CICE 2010—The 5th International Conference on FRP Composites in Civil Engineering, Beijing, China, 27–29 September 2010. [Google Scholar]
- Forte, A.; Santini, S.; Fiorentino, G.; Lavorato, D.; Bergami, A.V.; Nuti, C. Influence of materials knowledge level on the assessment of the shear strength characteristic value of existing RC beams. In Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic; 2018; pp. 979–986. [Google Scholar]
- EC2. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; European Commettee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- American Concrete Institute. Building Code Requirements for Structural Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2014; ACI318-2014. [Google Scholar]
- Slonski, M.; Schabowicz, K.; Krawczyk, E. Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural. Materials 2020, 13, 1557. [Google Scholar] [CrossRef] [Green Version]
- FEMA 274. NHERP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency: Washington, DC, USA, 1997. [Google Scholar]
- European Commettee for Standardization. Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression; European Commettee for Standardization: Brussels, Belgium, 2013; EN 12390-13:2013. [Google Scholar]
- Ahmad, S.; Pilakoutas, K.; Neocleous, K. Stress-strain model for low-strength concrete in uni-axial compression. Arab. J. Sci. Eng. 2015, 40, 313–328. [Google Scholar] [CrossRef]
- Ispir, M.; Dalgic, K.D.; Kuran, F.; Ilki, A. Modulus of elasticity of low-strength concrete. Proceeding of the 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey, 27–30 September 2010. [Google Scholar]
- Verderame, G.M.; Ricci, P.; Esposito, M.; Sansiviero, F.C. Le caratteristiche meccaniche degli acciai impiegati nelle strutture in ca realizzate dal 1950 al 1980. In Proceedings of the XXVI Convegno Nazionale AICAP, Padova, Italy, 19–21 May 2011. [Google Scholar]
- European Commettee for Standardization. Testing Concrete in Structures—Part 2: Non-Destructive Testing—Determination of Rebound Number; European Commettee for Standardization: Brussels, Belgium, 2012; EN 12504-2:2012. [Google Scholar]
- European Commettee for Standardization. Testing Concrete in Structures—Part 3: Determination of Pull-Out Force; European Commettee for Standardization: Brussels, Belgium, 2005; EN 12504-3:2005. [Google Scholar]
- European Commettee for Standardization. Testing Concrete in Structures—Part 3: Determination of Ultrasonic Pulse Velocity; European Commettee for Standardization: Brussels, Belgium, 2005; EN 12504-4:2005. [Google Scholar]
- Moczko, A.T.; Carino, N.J.; Petersen, C.G. Capo-test to estimate concrete strength in bridges. ACI Mater. J. 2016, 114, 827–836. [Google Scholar] [CrossRef]
- Luo, Q.; Bungey, J.H. Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete. Constr. Build. Mater. 1996, 10, 237–242. [Google Scholar]
- Hannachi, S.; Guetteche, M.N. Review of the ultrasonic pulse velocity evaluating concrete compressive strength on site. In Proceedings of the Scientific Cooperations International Workshop on Engineering Branches, Istanbul, Turkey, 8–9 August 2014. [Google Scholar]
- Byung, J.L.; Seong-Hoon, K.; Taekeun, O.; Yun-Yong, K. Evaluating the dynamic modulus of concrete using shear-wave velocity measurements. Adv. Mater. Sci. Eng. 2017, 17, 1651753. [Google Scholar]
- Hermann, V.; Weber, J.W.; Wesche, K. The dynamic modulus of elasticity as an equivalent for the initial tangent modulus of static testing. In Proceedings of the 2nd International Symposium on “New Developments in Non-Destructive Testing of Non-Metallic Materials”, Constanta, Rumania, 4–7 September 1974. [Google Scholar]
- Lydon, F.D.; Balendran, R.V. Some observations on elastic properties of plain concrete. Cem. Concr. Res. 1986, 16, 314–324. [Google Scholar] [CrossRef]
- Popovics, S. Verification of relationships between mechanical properties of concrete like-materials. Matér. Constr. 1975, 8, 183–191. [Google Scholar] [CrossRef]
- RILEM. NDT 4 Recommendations for In Situ Concrete Strength Determination by Combined Non-Destructive Methods—Compendium od RILEM, Technical Recommendations; E.F.N. Spon: London, UK, 1993. [Google Scholar]
- Gasparik, J. Prove Non Distruttive Nell’edilizia; Quaderno Didattico AIPnD: Brescia, Italy, 1992. [Google Scholar]
- Di Leo, A.; Pascale, G. Prove non distruttive sulle costruzioni in c.a. II G. Prove Distruttive 1994, 4. [Google Scholar]
- Sanpaolesi, L. L’evoluzione delle normative tecniche per la progettazione delle strutture in cemento armato. In Proceedings of the Giornate AICAP 2014, Bergamo, Italy, 22–24 May 2014. [Google Scholar]
- Breysse, D.; Balayssac, J.P. Strength assessment in reinforced concrete structures: From research to improved practices. Constr. Build. Mater. 2018, 182, 1–9. [Google Scholar] [CrossRef]
- Behnia, A.; Chai, H.K.; Yorikawa, M.; Momoki, S.; Terazawa, M.; Shiotani, T. Integrated non-destructive assessment of concrete structures under flexure by acoustic emission and travel time tomography. Constr. Build. Mater. 2014, 67, 202–215. [Google Scholar] [CrossRef]
- Liu, P.; Yeh, P. Vertical spectral tomography of concrete structures based on impact echo depth spectra. NDTE Int. 2010, 43, 45–53. [Google Scholar] [CrossRef]
- Pahlavan, L.; Zhang, F.; Blacquière, G.; Yang, Y.; Hordijk, D. Interaction of ultrasonic waves with partially-closed cracks in concrete structures. Constr. Build. Mater. 2018, 167, 899–906. [Google Scholar] [CrossRef]
- Buyukozturk, O. Imaging of concrete structures. NDTE Int. 1998, 31, 233–243. [Google Scholar] [CrossRef]
- Haach, V.G.; Ramirez, F.C. Qualitative assessment of concrete by ultrasound tomography. Constr. Build. Mater. 2016, 119, 61–70. [Google Scholar] [CrossRef]
- Kaltakci, M.Y.; Arslan, M.H.; Korkmaz, H.H.; Ozturk, M. An investigation on failed or damaged reinforced concrete structures under their own-weight in turkey. Eng. Fail. Anal. 2007, 14, 962–969. [Google Scholar] [CrossRef]
- Braga, F.; Laterza, M.; Gigliotti, R.; Dragonelli, G.; Nigro, D. Prove di compressione ciclica su pilastri in ca confinati con staffe e/o con tessuti in fibra di carbonio. In Proceedings of the XI Congresso Nazionale “L’ingegneria Sismica in Italia”, Siena, Italia, 25–28 September 2004. [Google Scholar]
- Du, M.; Jin, L.; Du, X.; Li, D. Size effect tests of stocky reinforced concrete columns confined by stirrups. Struct. Concr. 2017, 18, 454–465. [Google Scholar] [CrossRef]
- Lavorato, D.; Santini, S.; Nuti, C. Experimental investigation of the shear strength of rc beams extracted from an old structure and strengthened by carbon frp u-strips. Appl. Sci. 2018, 8, 1182. [Google Scholar] [CrossRef] [Green Version]
Element | Total N | Compression Test | Determination of the Secant Modulus of Elasticity | ||||
---|---|---|---|---|---|---|---|
N | fc,m (Mpa) | CV (%) | N | EC,Sm | CV (%) | ||
CL I-1 | 6 | 6 | 12.44 | 17.45 | 6 | 14,627 | 3.48 |
CL II-2 | 4 | 4 | 7.75 | 8.49 | 3 | 10,907 | 11.54 |
BEAM | 17 | 17 | 12.20 | 25.31 | 8 | 14,071 | 25.40 |
Element | Bar Type | Mechanical Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
N | Φ | σy,m (MPa) | CV (%) | σu,m (MPa) | CV (%) | Es,m | CV (%) | ||
CL I-1 | L | 3 | 18/20 | 347.47 | 4.4 | 530.83 | 6.2 | 176,000 | - |
CL I-1 | T | 3 | 6 | 335.43 | 2.0 | 410.32 | 1.7 | 199,020 | 1.9 |
CL II-2 | L | 3 | 16 | 298.78 | 3.3 | 426.69 | 2.4 | 191,980 | - |
CL II-2 | T | 3 | 6 | 394.33 | 7.6 | 545.02 | 1.1 | 183,135 | 7.7 |
BEAM | L | 16 | 14 | 293.31 | 11.4 | 381.41 | 3.7 | 195,723 | 7.6 |
BEAM | T | 6 | 8 | 360.65 | 4.8 | 462.85 | 3.5 | 196,780 | - |
Sample | N | Rc (Mpa) | F (kN) | Rpull (Mpa) | Rpull/Rc |
---|---|---|---|---|---|
CL I-1 | 6 | 14.44 | 14.22 | 12.35 | 0.86 |
CL II-2 | 4 | 9.02 | 7.46 | 7.01 | 0.78 |
Sample | N | EC,Sm (MPa) | CV (%) | Edyn,m (MPa) | CV (%) | Edyn,m/EC,Sm |
---|---|---|---|---|---|---|
A | 13 | 13,791 | 19.99 | 19,040 | 24.90 | 1.38 |
B | 8 | 14,071 | 25.40 | 17,510 | 22.76 | 1.24 |
N | IR | Vultr (m/s) | Rc (Mpa) | Rc,1 (Mpa) | Rc,2 (Mpa) | Rc,3 (Mpa) | Rc,S (Mpa) | Cs,1 | Cs,2 | Cs,3 | Cs,S | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CL I-1 | 6 | m | 36 | 3299 | 14.44 | 16.64 | 19.05 | 18.07 | 17.72 | 0.88 | 0.76 | 0.81 | 0.82 |
CV | 3.8 | 4.0 | 17.3 | 14.3 | 11.0 | 12.6 | 8.7 | 20.2 | 18.3 | 19.6 | 17.5 | ||
CL II-2 | 4 | m | 32 | 2546 | 9.02 | 6.90 | 9.83 | 8.20 | 10.55 | 1.31 | 0.92 | 1.10 | 0.86 |
CV | 3.2 | 3.9 | 8.5 | 5.7 | 3.3 | 6.2 | 2.5 | 11.3 | 9.8 | 11.6 | 9.4 | ||
TOT | 10 | m | - | - | - | - | - | - | - | 1.05 | 0.82 | 0.93 | 0.83 |
CV | - | - | - | - | - | - | - | 24.7 | 16.3 | 21.2 | 13.4 |
Element | F (kN) | n | sc (MPa) | Ec,sec,T (MPa) | Ec,sec,S (MPa) | n |
---|---|---|---|---|---|---|
CL II-3 | 864.04 | 29 | 8.05 | 5136 | 6640 | 0.225 |
CL II-1 | 874.00 | 26 | 8.30 | 5114 | 7228 | 0.131 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, S.; Forte, A.; Sguerri, L. The Structural Diagnosis of Existing RC Buildings: The Role of Nondestructive Tests in the Case of Low Concrete Strength. Infrastructures 2020, 5, 100. https://doi.org/10.3390/infrastructures5110100
Santini S, Forte A, Sguerri L. The Structural Diagnosis of Existing RC Buildings: The Role of Nondestructive Tests in the Case of Low Concrete Strength. Infrastructures. 2020; 5(11):100. https://doi.org/10.3390/infrastructures5110100
Chicago/Turabian StyleSantini, Silvia, Angelo Forte, and Lorena Sguerri. 2020. "The Structural Diagnosis of Existing RC Buildings: The Role of Nondestructive Tests in the Case of Low Concrete Strength" Infrastructures 5, no. 11: 100. https://doi.org/10.3390/infrastructures5110100
APA StyleSantini, S., Forte, A., & Sguerri, L. (2020). The Structural Diagnosis of Existing RC Buildings: The Role of Nondestructive Tests in the Case of Low Concrete Strength. Infrastructures, 5(11), 100. https://doi.org/10.3390/infrastructures5110100