Design Corrections in Spanish Office Buildings to Improve Energy Efficiency in the Face of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and the Bulding
2.2. Method
2.2.1. EN ISO 13790
2.2.2. Climatic Change Predictions
2.2.3. Building Energetic Simulation
3. Results and Discussion
3.1. Future Weather Conditions
3.2. ISO 13790 Standard
3.3. Validation of the Energy Ratio Calculation Procedure
3.4. Building Design Corrections
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicol, F.; Humphreys, M. Maximum temperatures in European office buildings to avoid heat discomfort. J. Sol. Energy 2007, 81, 295–304. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Energy Performance Building Directive. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 3 December 2020).
- European Commission. Council Decision 2002/358/EC Concerning the Approval, on Behalf of the European Community, of the Kyoto Protocol to the United Nations Framework Convention on Climate Change and the Joint Fulfillment of Commitments Thereunder; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Alcántara, V.; Padilla, V. Input–output subsystems and pollution: An application to the service sector and CO2 emissions in Spain. Ecol. Econ. 2009, 68, 905–914. [Google Scholar] [CrossRef]
- Roca, J.; Serrano, M. Income growth and atmospheric pollution in Spain: An input–output approach. Ecol. Econ. 2007, 63, 230–242. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- The Intergovernmental Panel on Climate Change (IPCC). The Physcial Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Hertig, E.; Jacobeit, J. Downscaling future climate change: Temperature scenarios for the Mediterranean area. Glob. Planet. Chang. 2008, 63, 127–131. [Google Scholar] [CrossRef]
- Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [Google Scholar] [CrossRef]
- Naranjo, L.; Vicente, P.M. A Variabilidade Natural Do Clima en Galicia; MeteoGalicia; Xunta de Galicia e fundación Caixa Galicia, Ed.; Consellería de Medio Ambiente e Desenvolvemento Sostible: Santiago de Compostela, Spain, 2006; pp. 1–292. [Google Scholar]
- CIBSE. Climate Change and the Indoor Environment: Impacts and Adaptation; CIBSE TM36; The Chartered Institution of Buildings Services Engineers: London, UK, 2005. [Google Scholar]
- ASHRAE. Energy Estimating and Modelling Methods. In ASHRAE Handbook, Fundamentals; American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2009. [Google Scholar]
- International Organization for Standardization. Thermal Performance of Buildings-Calculation of Energy Use for Space Heating and Cooling; ISO/DIS 13790:2005; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Standard SFS-EN 832. Thermal Performance of Buildings. Calculation of Energy Use for Heating. Residential Buildings; SFS-EN 832; BIS: London, UK, 1998. [Google Scholar]
- Standard SFS-EN ISO 13370. Thermal Performance of Buildings, Heat Transfer via the Ground, Calculation Methods; BIS: London, UK, 1998. [Google Scholar]
- RITE. Reglamento de Instalaciones Térmicas en los Edificios; Ceysa. Cano Pina: Murcia, Spain, 2007. [Google Scholar]
- MeteoGalicia. Available online: https://www.meteogalicia.gal/web/inicio.action (accessed on 11 November 2020).
- ATECYR. Entrada de Datos a los Programas LIDER y CALENER VyP; ATECY: Madrid, Spain, 2008. [Google Scholar]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Gratia, E.; De Herde, A. Design of low energy office buildings. Energy Build. 2003, 35, 473–491. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, D.; Hong, T.; Xiao, C.; Luo, X.; Zhang, Q. Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China. Appl. Energy 2017, 197, 890–904. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, V.; Evola, G.; Infantone, M.F.; Marletta, L. Updated typical weather years for the energy simulation of buildings in Mediterranean climate. A case study for Sicily. Energies 2020, 13, 4115. [Google Scholar] [CrossRef]
- Ubinas, R.E.; Montero, C.; Porteros, M.; Vega, S.; Navarro, I.; Castillo Cagigal, M.; Gutiérrez, A. Passive design strategies and performance of net energy plus houses. Energy Build. 2014, 83, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Antolin, M.; Del Rio, J.M.; Costanzo, V.; Nocera, F.; Gonzalez-Lezcano, R.A. Passive design strategies for residential buildings in different Spanish climate zones. Sustainability 2019, 11, 4816. [Google Scholar] [CrossRef] [Green Version]
- Masdías-Bonome, E.; Orosa, J.A.; Vergara, D. A new methodology for decision-making in buildings energy optimization. Appl. Sci. 2020, 10, 4558. [Google Scholar] [CrossRef]
- Orosa, J.A.; Nematchoua, M.K.; Reiter, S. Air changes for healthy indoor ambiences under pandemic conditions and its energetic implications: A Galician case study. Appl. Sci. 2020, 10, 7169. [Google Scholar] [CrossRef]
- Orosa, J.A.; Costa, Á.M.; Rodríguez-Fernández, A.; Roshan, G. Effect of climate change on outdoor thermal comfort in humid climates. J. Environ. Health Sci. Eng. 2014, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Nematchoua, M.K.; Tchinda, R.; Orosa, J.A.; Andreasi, W.A. Effect of wall construction materials over indoor air quality in humid and hot climate. J. Build. Eng. 2015, 3, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Orosa, J.A.; García-Bustelo, E.J. Permeable coverings as a sustainable solution for indoor air thermal comfort and energy saving. Energy Ed. Sci. Technol. Part A Energy Sci. Res. 2012, 29, 583–596. [Google Scholar]
- Jokisalo, J.; Kurnitski, J. Performance of EN ISO 13790 utilisation factor heat demand calculation method in a cold climate. Energy Build. 2007, 39, 236–247. [Google Scholar] [CrossRef]
- Corrado, V.; Mechri, H.E.; Fabrizio, E. Building energy performance assessment through simplified models: Application of the ISO 13790 quasi-steady state method. In Proceedings of the building simulation, Beijing, China, 3–6 September 2007; pp. 79–86. [Google Scholar]
- Orosa, J.A.; Vergara, D.; Costa, Á.M.; Bouzón, R. A novel method for nZEB internal coverings design based on neural networks. Coatings 2019, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE Standard 62-2004. Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2004. [Google Scholar]
- Holmes, M.J.; Hacker, J.N. Climate change, thermal comfort and energy: Meeting the design challenges of the 21ts century. Energy Build. 2007, 39, 802–814. [Google Scholar] [CrossRef]
- Lomas, K.J. Architectural design of an advanced naturally ventilated building form. Energy Build. 2006, 39, 166–181. [Google Scholar] [CrossRef]
- Van der Veken, J.; Saelens, D.; Verbeeck, G.; Hens, H. Comparison of Steady State and Dynamic Building Environment Simulation Programs. In Proceedings of the International Buildings IX ASHRAE Conference on the Performance of Exterior Envelopes of Whole Buildings, Clearwater, FL, USA, 5–10 December 2004. [Google Scholar]
- De Meulenaer, V.; Van der Veken, J.; Verbeeck, G.; Hens, H. Comparison of measurements and simulations of a passive house. In Proceedings of the 9th International IBPSA conference, Montréal, QC, Canada, 15–18 August 2005; pp. 769–776. [Google Scholar]
- Bolattürk, A. Determination of optimum insulation thickness for building walls with respect top various fuels and climate zones in Turkey. Appl. Therm. Eng. 2006, 26, 1301–1309. [Google Scholar] [CrossRef]
- Eicker, U.; Huber, M.; Seeberger, P.; Vorschulze, C. Limits and potentials of office buildings climatisation with ambient air. Energy Build. 2006, 38, 574–581. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosa, J.A.; Vergara, D.; Fraguela, F.; Fernández-Arias, P. Design Corrections in Spanish Office Buildings to Improve Energy Efficiency in the Face of Climate Change. Infrastructures 2020, 5, 114. https://doi.org/10.3390/infrastructures5120114
Orosa JA, Vergara D, Fraguela F, Fernández-Arias P. Design Corrections in Spanish Office Buildings to Improve Energy Efficiency in the Face of Climate Change. Infrastructures. 2020; 5(12):114. https://doi.org/10.3390/infrastructures5120114
Chicago/Turabian StyleOrosa, José A., Diego Vergara, Feliciano Fraguela, and Pablo Fernández-Arias. 2020. "Design Corrections in Spanish Office Buildings to Improve Energy Efficiency in the Face of Climate Change" Infrastructures 5, no. 12: 114. https://doi.org/10.3390/infrastructures5120114
APA StyleOrosa, J. A., Vergara, D., Fraguela, F., & Fernández-Arias, P. (2020). Design Corrections in Spanish Office Buildings to Improve Energy Efficiency in the Face of Climate Change. Infrastructures, 5(12), 114. https://doi.org/10.3390/infrastructures5120114