Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp
Abstract
:1. Introduction
2. Methodology
3. Aerodynamic and Aeroelastic Tests
3.1. Cross-Sectional Geometries and Properties of the Pedestrian Bridge
3.2. Wind Loads from Aerodynamic Tests
3.3. Flutter Derivatives from Aeroelastic Tests
4. Structural Setup
5. Examination of Critical Flutter Speeds
6. Case Study
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breyer, D.; Fridley, K.; Pollock, D.; Cobeen, K. Design of Wood Structures, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Wacker, J.P.; Smith, M.S. Standard Plans for Timber Bridge Superstructures. Forest Products Laboratory. Madison: Department of Agriculture, Forest Service. Available online: https://www.fs.usda.gov/treesearch/pubs/9710 (accessed on 21 June 2020).
- Sheila, R.D.; Robert, C. Wood, The Federal Highway Administration Timber Bridge Program. 2012. Available online: https://www.fpl.fs.fed.us/documnts/pdf1996/duwad96a.pdf (accessed on 21 June 2020).
- James, W.; Mathew, S. Standard Plans for Timber Bridge Structures. Forest Products Laboratory. 2012. Available online: https://www.fs.usda.gov/treesearch/pubs/9710 (accessed on 21 June 2020).
- Viskovic, A. Hemp Cables, a Sustainable Alternative to Harmonic Steel for Cable Nets. Resources 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Herer, J.; The Emperor Wears No Clothes. Text from “The Emperor Wears No Clothes” © Jack Herer. Available online: http://www.electricemperor.com/eecdrom/TEXT/TXTCH02.HTM (accessed on 1 November 2018).
- Zhang, H.; Zhong, Z.; Feng, L. Advances in the performance and application of hemp fiber. Int. J. Simul. Syst. Sci. Technol. 2016, 17. [Google Scholar] [CrossRef]
- Boesa, I.; Karus, M. The Cultivation of Hemp: Botan, Varieties, Cultivation and Harvesting; Hemptegh: Auckland, New Zealand, 1998; pp. 24–29. [Google Scholar]
- Cuissinat, C.; Navard, P. Swelling and dissolution of cellulose—Part III: Plant fibers in aqueous systems. Cellulose 2008, 12, 14–21. [Google Scholar] [CrossRef]
- Karus, M. Fibrin bandages include natural clotting agents—US Army and Navy tackle bleeding in different ways. MedText 1999, 9, 11–13. [Google Scholar]
- Pejic, B.; Vukcevic, M.; Kostic, M.; Skundric, P. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition. J. Hazard. Mater. 2004, 23, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Ouajai, S.; Shanks, R.A. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab. 2005, 89, 327–335. [Google Scholar] [CrossRef]
- CGA/R. West. Published by Warner Chappell Music. Environmental and Economic Benefits of Hemp. Available online: http://www.nemeton.com/static/nemeton/axis-mutatis/hemp.html (accessed on 1 November 2018).
- Hirst, E.; Walker, P.; Paine, K.; Yates, T. Characterization of Low Density Hemp-Lime Composite Building Materials Under Compression Loading. In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Acona, Italy, 28 June 2010. [Google Scholar]
- McLaren, A.J. Design and performance of ropes for climbing and sailing. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl. 2006, 220, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, F.; Caracoglia, L. Examining wind tunnel errors in Scanlan derivatives and flutter speed of a closed-box. J. Wind Struct. 2018, 26, 231–251. [Google Scholar]
- Scanlan, R.H.; Tomko, J.J. Airfoil and bridge deck flutter derivatives. J. Eng. Mech. Div. 1971, 97, 1717–1737. [Google Scholar]
- Simiu, E.; Scanlan, R.H. Wind Effects on Structures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Rizzo, F.; Caracoglia, L.; Montelpare, S. Predicting the flutter speed of a pedestrian suspension bridge through examination of laboratory experimental errors. Eng. Struct. 2018, 172, 589–613. [Google Scholar] [CrossRef]
- Augusti, G.; Spinelli, P.; Borri, C.; Bartoli, G.; Giachi, M.; Giordano, S. The C.R.I.A.C.I.V. Atmospheric Boundary Layer Wind Tunnel. Proceeding of the 9th International Conference on Wind Engineering, New Delhi, India, 9–13 January 1995; Wiley Eastern Ltd.: Delhi, India, 1995. [Google Scholar]
- National Research Council of Italy (CNR). Guide for the Assessment of Wind Actions and Effects on Structures; CNR-DT 207/2008; CNR: Roma, Italy, 2008. [Google Scholar]
- Brito, R.; Caracoglia, L. Extraction of flutter derivatives from small scale wind tunnel experiments. In Proceedings of the 11th Americas Conference on Wind Engineering, American Association for Wind Engineering (AAWE), San Juan, Puerto Rico, 22–26 June 2009. [CD-ROM]. [Google Scholar]
- Seo, D.-W.; Caracoglia, L. Statistical buffeting response of flexible bridges influenced by errors in aeroelastic loading estimation. J. Wind Eng. Ind. Aerodyn. 2012, 129–140. [Google Scholar] [CrossRef]
- Matsumoto, M. Aerodynamic damping of prisms. J. Wind Eng. Ind. Aerodyn. 1996, 59, 159–175. [Google Scholar] [CrossRef]
- Matsumoto, M.; Abern, K. Role of coupled derivatives on flutter instabilities. Wind Struct. 1998, 1, 175–181. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kobayashi, Y.; Shirato, H. The influence of aerodynamic derivatives on flutter. J. Wind Eng. Ind. Aerodyn. 1996, 60, 227–239. [Google Scholar] [CrossRef]
- Sato, H.; Murakoshi, J.; Fumoto, K. Benchmark Study on Flutter Derivatives–Measurements at PWRI, Japan; Unpublished Research Report, Structures Research Group; Public Works Research Institute: Tsukuba, Japan, 2004. [Google Scholar]
- Sarkar, P.P.; Caracoglia, L.; Haan, F.L.; Sato, H.; Murakoshi, J. Comparative and sensitivity study of flutter derivatives of selected bridge deck sections. Part 1: Analysis of inter-laboratory experimental data. Eng. Struct. 2009, 31, 158–169. [Google Scholar] [CrossRef]
- Rizzo, F.; Caracoglia, L. Artificial Neural Network model to predict the flutter velocity of suspension bridges. Comput. Struct. 2020, 233, 106236. [Google Scholar] [CrossRef]
- Gimsing, N.J.; Georgakis, C.T. Cable Supported Bridges: Concept and Design, 3rd ed.; Department of Civil Engineering, Technical University of Denmark: Chichester, UK, 2011. [Google Scholar]
- Comité Européen de Normalization (CEN). Eurocode 1: Actions on Structures—Part. 1–4: General Actions—Wind Actions; EN-1991-1-4; Comité Européen de Normalization: Brussels, Belgium, 2005. [Google Scholar]
- American Society of Civil Engineering (ASCE). Wind Tunnel Studies of Buildings and Structures; Isyumov, N., Ed.; Manuals of Practice (MOP) 67; ASCE: Reston, VA, USA, 1999. [Google Scholar]
- American Society of Civil Engineering (ASCE). Minimum Design Loads for Buildings and Other Structures; ASCE: Reston, VA, USA, 2010. [Google Scholar]
Geometrical Configuration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m | m | m | m | m | m | m | m | m | m | m | m | |
1 | 0.97 | 2.59 | 0.55 | 1.09 | 10.05 | 6.81 | 494.00 | 584.00 | 45.00 | 3.00 | 45.00 | 15.00 |
2 | 0.78 | 2.08 | 0.44 | 0.87 | 8.04 | 5.45 | ||||||
3 | 0.88 | 2.34 | 0.49 | 0.98 | 9.05 | 6.13 | ||||||
4 | 1.17 | 3.11 | 0.66 | 1.31 | 12.06 | 8.17 | ||||||
5 | 1.07 | 2.85 | 0.60 | 1.20 | 11.06 | 7.49 |
Configuration | m | m | kN/m2 | kN/m2 | kN/m2 | kg/m | kgm |
---|---|---|---|---|---|---|---|
1 | 1.64 | 12.00 | 0.86 | 4.20 | 2.50 | 6187.56 | 75,637.60 |
2 | 1.64 | 12.00 | 0.86 | 3.85 | 2.50 | 5759.43 | 70,404.03 |
3 | 1.64 | 12.00 | 0.86 | 3.50 | 2.50 | 5331.29 | 65,170.46 |
4 | 1.64 | 12.00 | 0.86 | 3.15 | 2.50 | 4903.16 | 59,936.88 |
5 | 1.64 | 12.00 | 0.86 | 2.88 | 2.50 | 4572.88 | 55,899.55 |
6 | 1.31 | 9.60 | 1.07 | 4.20 | 2.50 | 5160.04 | 40,369.30 |
7 | 1.31 | 9.60 | 1.07 | 3.85 | 2.50 | 4817.53 | 37,689.71 |
8 | 1.31 | 9.60 | 1.07 | 3.50 | 2.50 | 4475.03 | 35,010.12 |
9 | 1.31 | 9.60 | 1.07 | 3.15 | 2.50 | 4132.52 | 32,330.53 |
10 | 1.31 | 9.60 | 1.07 | 2.88 | 2.50 | 3868.30 | 30,263.42 |
11 | 1.48 | 10.80 | 0.95 | 4.20 | 2.50 | 5673.80 | 56,179.43 |
12 | 1.48 | 10.80 | 0.95 | 3.85 | 2.50 | 5288.48 | 52,364.15 |
13 | 1.48 | 10.80 | 0.95 | 3.50 | 2.50 | 4903.16 | 48,548.87 |
14 | 1.48 | 10.80 | 0.95 | 3.15 | 2.50 | 4517.84 | 44,733.60 |
15 | 1.48 | 10.80 | 0.95 | 2.88 | 2.50 | 4220.59 | 41,790.39 |
16 | 1.97 | 14.40 | 0.72 | 4.20 | 2.50 | 7215.09 | 127,005.38 |
17 | 1.97 | 14.40 | 0.72 | 3.85 | 2.50 | 6701.33 | 117,961.77 |
18 | 1.97 | 14.40 | 0.72 | 3.50 | 2.50 | 6187.56 | 108,918.15 |
19 | 1.97 | 14.40 | 0.72 | 3.15 | 2.50 | 5673.80 | 99,874.53 |
20 | 1.97 | 14.40 | 0.72 | 2.88 | 2.50 | 5277.47 | 92,898.03 |
21 | 1.80 | 13.20 | 0.78 | 4.20 | 2.50 | 6701.33 | 99,120.65 |
22 | 1.80 | 13.20 | 0.78 | 3.85 | 2.50 | 6230.38 | 92,154.76 |
23 | 1.80 | 13.20 | 0.78 | 3.50 | 2.50 | 5759.43 | 85,188.88 |
24 | 1.80 | 13.20 | 0.78 | 3.15 | 2.50 | 5288.48 | 78,222.99 |
25 | 1.80 | 13.20 | 0.78 | 2.88 | 2.50 | 4925.18 | 72,849.31 |
Configuration | m | m | kN/m2 | kN/m2 | kN/m2 | kg/m | kgm |
---|---|---|---|---|---|---|---|
1 | 1.64 | 12.00 | 0.75 | 3.60 | 2.50 | 5321.10 | 65,045.85 |
2 | 1.64 | 12.00 | 0.75 | 3.30 | 2.50 | 4954.13 | 60,559.93 |
3 | 1.64 | 12.00 | 0.75 | 3.00 | 2.50 | 4587.16 | 56,074.01 |
4 | 1.64 | 12.00 | 0.75 | 2.70 | 2.50 | 4220.18 | 51,588.09 |
5 | 1.64 | 12.00 | 0.75 | 2.44 | 2.50 | 3902.14 | 47,700.29 |
6 | 1.31 | 9.60 | 0.94 | 3.60 | 2.50 | 4440.37 | 34,738.97 |
7 | 1.31 | 9.60 | 0.94 | 3.30 | 2.50 | 4146.79 | 32,442.18 |
8 | 1.31 | 9.60 | 0.94 | 3.00 | 2.50 | 3853.21 | 30,145.39 |
9 | 1.31 | 9.60 | 0.94 | 2.70 | 2.50 | 3559.63 | 27,848.59 |
10 | 1.31 | 9.60 | 0.94 | 2.44 | 2.50 | 3305.20 | 25,858.04 |
11 | 1.48 | 10.80 | 0.83 | 3.60 | 2.50 | 4880.73 | 48,326.82 |
12 | 1.48 | 10.80 | 0.83 | 3.30 | 2.50 | 4550.46 | 45,056.59 |
13 | 1.48 | 10.80 | 0.83 | 3.00 | 2.50 | 4220.18 | 41,786.35 |
14 | 1.48 | 10.80 | 0.83 | 2.70 | 2.50 | 3889.91 | 38,516.11 |
15 | 1.48 | 10.80 | 0.83 | 2.44 | 2.50 | 3603.67 | 35,681.91 |
16 | 1.97 | 14.40 | 0.63 | 3.60 | 2.50 | 6201.83 | 109,169.36 |
17 | 1.97 | 14.40 | 0.63 | 3.30 | 2.50 | 5761.47 | 101,417.69 |
18 | 1.97 | 14.40 | 0.63 | 3.00 | 2.50 | 5321.10 | 93,666.02 |
19 | 1.97 | 14.40 | 0.63 | 2.70 | 2.50 | 4880.73 | 85,914.35 |
20 | 1.97 | 14.40 | 0.63 | 2.44 | 2.50 | 4499.08 | 79,196.23 |
21 | 1.80 | 13.20 | 0.68 | 3.60 | 2.50 | 5761.47 | 85,219.03 |
22 | 1.80 | 13.20 | 0.68 | 3.30 | 2.50 | 5357.80 | 79,248.27 |
23 | 1.80 | 13.20 | 0.68 | 3.00 | 2.50 | 4954.13 | 73,277.51 |
24 | 1.80 | 13.20 | 0.68 | 2.70 | 2.50 | 4550.46 | 67,306.75 |
25 | 1.80 | 13.20 | 0.68 | 2.44 | 2.50 | 4200.61 | 62,132.09 |
Configuration # | Steel and Harmonic Steel Cables | Laminated Wood and Hemp Cables | ||||
---|---|---|---|---|---|---|
rad/s | rad/s | rad/s | rad/s | |||
1 | 1.834 | 2.901 | 1.582 | 2.594 | 3.799 | 1.465 |
2 | 1.834 | 2.945 | 1.606 | 2.656 | 3.862 | 1.454 |
3 | 1.834 | 2.989 | 1.630 | 2.719 | 3.931 | 1.446 |
4 | 1.834 | 3.027 | 1.651 | 2.788 | 4.000 | 1.435 |
5 | 1.828 | 3.052 | 1.670 | 2.845 | 4.183 | 1.470 |
6 | 1.784 | 2.770 | 1.553 | 2.003 | 3.611 | 1.803 |
7 | 1.790 | 2.820 | 1.575 | 2.010 | 3.674 | 1.828 |
8 | 1.790 | 2.864 | 1.600 | 2.066 | 3.737 | 1.809 |
9 | 1.784 | 2.914 | 1.634 | 2.116 | 3.806 | 1.798 |
10 | 1.784 | 2.945 | 1.651 | 2.167 | 3.869 | 1.786 |
11 | 1.809 | 2.839 | 1.570 | 2.267 | 3.705 | 1.634 |
12 | 1.809 | 2.889 | 1.597 | 2.324 | 3.768 | 1.622 |
13 | 1.809 | 2.933 | 1.622 | 2.380 | 3.837 | 1.612 |
14 | 1.809 | 2.977 | 1.646 | 2.443 | 3.906 | 1.599 |
15 | 1.802 | 3.002 | 1.665 | 2.499 | 3.969 | 1.588 |
16 | 1.890 | 3.008 | 1.591 | 3.008 | 3.969 | 1.319 |
17 | 1.890 | 3.046 | 1.611 | 3.040 | 4.032 | 1.326 |
18 | 1.890 | 3.084 | 1.631 | 3.071 | 4.101 | 1.335 |
19 | 1.884 | 3.115 | 1.653 | 2.901 | 4.327 | 1.491 |
20 | 1.878 | 3.134 | 1.669 | 2.744 | 4.296 | 1.565 |
21 | 1.859 | 2.958 | 1.591 | 2.927 | 3.881 | 1.326 |
22 | 1.859 | 2.656 | 1.429 | 2.933 | 3.950 | 1.347 |
23 | 1.859 | 3.040 | 1.635 | 2.958 | 4.019 | 1.359 |
24 | 1.859 | 3.077 | 1.655 | 2.977 | 4.088 | 1.373 |
25 | 1.853 | 3.096 | 1.671 | 2.813 | 4.183 | 1.487 |
Configuration # | Steel and Harmonic Steel Cables | Wood and Hemp Cables | ||||||
---|---|---|---|---|---|---|---|---|
m/s | m/s | |||||||
1 | 103.8 | 91.5 | 56.6 | 11.5 | 132.1 | 114.9 | 62.0 | 20.0 |
2 | 103.2 | 91.1 | 52.5 | 13.2 | 136.8 | 113.8 | 62.4 | 23.2 |
3 | 103.3 | 90.0 | 48.8 | 15.5 | 139.5 | 111.7 | 63.5 | 25.7 |
4 | 105.0 | 87.7 | 48.9 | 17.9 | 138.2 | 106.4 | 64.6 | 26.5 |
5 | 107.8 | 86.2 | 49.3 | 19.9 | 146.2 | 109.5 | 67.5 | 29.8 |
6 | 75.2 | 69.8 | 35.8 | 7.1 | 101.1 | 90.5 | 66.2 | 8.1 |
7 | 78.4 | 70.8 | 36.4 | 7.7 | 102.9 | 91.7 | 61.2 | 10.1 |
8 | 78.8 | 72.8 | 52.9 | 6.2 | 106.9 | 92.9 | 56.4 | 12.6 |
9 | 81.9 | 73.6 | 47.9 | 8.3 | 106.6 | 92.6 | 52.0 | 14.5 |
10 | 84.7 | 73.8 | 44.8 | 9.7 | 109.2 | 91.1 | 50.4 | 16.8 |
11 | 88.6 | 81.3 | 58.9 | 6.9 | 118.4 | 104.5 | 62.9 | 13.9 |
12 | 91.7 | 82.6 | 54.5 | 9.0 | 119.3 | 104.3 | 58.3 | 16.1 |
13 | 94.9 | 83.1 | 50.1 | 11.0 | 120.9 | 102.6 | 56.4 | 18.5 |
14 | 94.8 | 82.5 | 45.7 | 13.1 | 124.5 | 101.6 | 56.8 | 21.7 |
15 | 93.0 | 80.1 | 44.0 | 14.5 | 125.6 | 99.5 | 57.7 | 23.8 |
16 | 126.6 | 105.9 | 58.7 | 21.1 | 165.4 | 130.7 | 76.9 | 31.7 |
17 | 129.4 | 103.7 | 59.0 | 23.2 | 166.2 | 127.3 | 78.0 | 33.9 |
18 | 126.4 | 100.0 | 59.8 | 24.3 | 172.6 | 124.0 | 79.4 | 36.1 |
19 | 133.3 | 98.5 | 60.3 | 26.5 | 180.5 | 126.4 | 83.7 | 39.3 |
20 | 131.2 | 96.5 | 60.6 | 27.1 | 180.3 | 124.9 | 83.0 | 38.4 |
21 | 113.7 | 99.9 | 55.1 | 15.9 | 149.1 | 121.6 | 69.0 | 25.7 |
22 | 102.8 | 87.0 | 47.7 | 16.2 | 154.7 | 122.3 | 70.2 | 29.0 |
23 | 116.8 | 95.8 | 54.0 | 20.5 | 152.7 | 115.5 | 71.4 | 29.7 |
24 | 115.7 | 92.3 | 54.7 | 22.0 | 156.8 | 115.9 | 72.6 | 31.6 |
25 | 120.1 | 91.0 | 55.0 | 23.0 | 164.3 | 113.4 | 74.2 | 35.0 |
Configuration # | Steel and Harmonic Steel Cables | Wood and Hemp Cables | ||||||
---|---|---|---|---|---|---|---|---|
m/s | m/s | |||||||
1 | 102.9 | 65.9 | 41.4 | 22.1 | 125.5 | 109.1 | 58.9 | 31.3 |
2 | 104.4 | 71.6 | 45.9 | 23.2 | 135.4 | 112.6 | 61.8 | 32.8 |
3 | 106.9 | 75.7 | 41.7 | 24.6 | 134.0 | 107.2 | 60.9 | 35.4 |
4 | 108.5 | 71.4 | 24.5 | 30.0 | 135.4 | 104.3 | 63.3 | 36.2 |
5 | 109.4 | 75.3 | 24.7 | 30.6 | 136.0 | 101.8 | 62.8 | 39.4 |
6 | 74.1 | 50.4 | 35.8 | 15.7 | 103.1 | 92.3 | 67.6 | 24.0 |
7 | 79.9 | 52.8 | 36.5 | 16.2 | 104.0 | 92.6 | 61.8 | 24.9 |
8 | 80.9 | 53.1 | 37.1 | 17.1 | 105.8 | 92.0 | 55.9 | 23.6 |
9 | 82.3 | 52.8 | 35.4 | 17.1 | 101.3 | 88.0 | 49.4 | 24.4 |
10 | 83.5 | 50.6 | 19.2 | 19.2 | 107.1 | 89.3 | 49.4 | 24.8 |
11 | 90.3 | 58.6 | 40.9 | 18.6 | 117.2 | 103.5 | 62.3 | 27.3 |
12 | 91.7 | 58.9 | 37.5 | 19.5 | 121.7 | 106.3 | 59.5 | 29.0 |
13 | 93.5 | 62.5 | 42.7 | 19.9 | 133.0 | 112.9 | 62.0 | 30.9 |
14 | 95.8 | 62.9 | 21.9 | 24.6 | 118.2 | 96.5 | 54.0 | 32.5 |
15 | 96.6 | 62.9 | 23.9 | 25.4 | 120.5 | 95.5 | 55.4 | 34.3 |
16 | 128.8 | 93.9 | 47.7 | 30.9 | 162.1 | 128.1 | 75.4 | 38.4 |
17 | 131.1 | 97.9 | 47.2 | 32.1 | 164.6 | 126.0 | 77.2 | 41.3 |
18 | 132.7 | 95.3 | 26.8 | 36.7 | 169.2 | 121.6 | 77.8 | 42.2 |
19 | 134.3 | 97.9 | 26.8 | 37.1 | 178.7 | 125.1 | 82.9 | 51.5 |
20 | 135.3 | 99.9 | 26.8 | 40.1 | 173.1 | 119.9 | 79.7 | 52.4 |
21 | 116.0 | 83.8 | 43.4 | 28.1 | 146.1 | 119.2 | 67.6 | 34.3 |
22 | 105.0 | 83.2 | 47.5 | 23.3 | 150.1 | 118.6 | 68.1 | 36.7 |
23 | 119.8 | 84.0 | 26.8 | 33.1 | 146.6 | 110.9 | 68.5 | 39.2 |
24 | 121.4 | 89.2 | 26.8 | 31.7 | 145.9 | 107.8 | 67.5 | 40.1 |
25 | 122.3 | 91.1 | 26.8 | 31.4 | 180.7 | 124.8 | 81.7 | 45.1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, F. Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp. Infrastructures 2020, 5, 60. https://doi.org/10.3390/infrastructures5070060
Rizzo F. Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp. Infrastructures. 2020; 5(7):60. https://doi.org/10.3390/infrastructures5070060
Chicago/Turabian StyleRizzo, Fabio. 2020. "Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp" Infrastructures 5, no. 7: 60. https://doi.org/10.3390/infrastructures5070060
APA StyleRizzo, F. (2020). Aeroelastic Response of Suspended Pedestrian Bridges Made of Laminated Wood and Hemp. Infrastructures, 5(7), 60. https://doi.org/10.3390/infrastructures5070060